若x>1,求y=
x2-2x+2
x-1
的最小值是
 
考點:基本不等式
專題:不等式的解法及應用
分析:變形利用基本不等式即可得出.
解答: 解:∵x>1,∴x-1>0.
∴y=
x2-2x+2
x-1
=
(x-1)2+1
x-1
=(x-1)+
1
x-1
2
(x-1)•
1
x-1
=2,當且僅當x=2式取等號.
∴求y=
x2-2x+2
x-1
的最小值是2.
故答案為:2.
點評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)a=
x2-xy+y2
,b=p
xy
,c=x+y,若對任意的正實數(shù)x,y,都存在以a,b,c為三邊長的三角形,則實數(shù)p的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:函數(shù)f(x)=2sin(2x-
π
3

(1)求函數(shù)的對稱中心的坐標,對稱軸方程;
(2)當x∈[0,π]時,求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在△ABC中,sinA=
5
13
,cosB=
3
5
,求cosC的值.
(2)已知cos(
π
4
+x)=
3
5
,
17
12
π<x
7
4
π,求
sin2x+2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關(guān)于x的不等式-1≤x2+bx+2≤1只有一個實數(shù)解,則b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)Sn是等差數(shù)列{an}的前n項和,已知a3=5,a5=9,則S7等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由1,2,3,4,5,6組成沒有重復數(shù)字且1,3不相鄰的六位偶數(shù)的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)不等式組
2x-y+3≥0
x+y≥0
x≤1
表示的平面區(qū)為D,P(x,y)為D內(nèi)一動點,則目標函數(shù)z=x-2y+5的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若2
2
cos2α=sin(
π
4
-α),則sin2α=
 

查看答案和解析>>

同步練習冊答案