【題目】如圖,長方體被經(jīng)過的動平面所截,分別與棱,交于點,,得到截面,已知.

1)求證:;

2)若直線與截面所成角的正弦值為,求的長.

【答案】1)證明見解析;(2.

【解析】

1)由于,,兩兩垂直,所以以為原點,分別以,,所在直線為軸,軸,軸,建立空間直角坐標系,由題可知,若設出點,則可表示出點的坐標,從而可得到向量坐標,得,所以;

(2)設,先求出平面的法向量,然后利用空間向量結合向量的夾角公式求解即可.

1)以為原點,分別以,,所在直線為軸,軸,軸,

建立空間直角坐標系.,,,.

依題意易得,設,則,

所以,而,所以,所以.

2)因為,,,設平面的法向量為,則,令,則

設直線與截面所成角為,所以

解得,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,,,,E的中點.現(xiàn)將沿翻折,使點A移動至平面外的點P.

1)若,求證:平面

2)若平面平面,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了治療某種疾病,某科研機構研制了甲、乙兩種新藥,為此進行白鼠試驗.試驗方案如下:每一輪選取兩只白鼠對藥效進行對比試驗.對于兩只白鼠,隨機選一只施以甲藥,另一只施以乙藥一輪的治療結果得出后,再安排下一輪試驗.4輪試驗后,就停止試驗.甲、乙兩種藥的治愈率分別是.

1)若,求2輪試驗后乙藥治愈的白鼠比甲藥治愈的白鼠多1只的概率;

2)已知A公司打算投資甲、乙這兩種新藥的試驗耗材費用,甲藥和乙藥一次試驗耗材花費分別為3千元和千元,每輪試驗若甲、乙兩種藥都治愈或都沒有治愈,則該科研機構和A公司各承擔該輪試驗耗材總費用的50%;若甲藥治愈,乙藥未治愈,則A公司承擔該輪試驗耗材總費用的75%,其余由科研機構承擔,若甲藥未治愈,乙藥治愈,則A公司承擔該輪試驗耗材總費用的25%,其余由科研機構承擔.A公司每輪支付試驗耗材費用的期望為標準,求A公司4輪試驗結束后支付試驗耗材最少費用為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調查機構對全國互聯(lián)網(wǎng)行業(yè)進行調查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、“90從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結論中正確的是(

注:“901990年及以后出生的人,“801980-1989年之間出生的人,“801979年及以前出生的人.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中“90占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)超過總人數(shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)“90“80

D.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)“90“80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年,某省將實施新高考,年秋季入學的高一學生是新高考首批考生,新高考不再分文理科,采用模式,其中語文、數(shù)學、外語三科為必考科目,滿分各分,另外,考生還要依據(jù)想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物門科目中自選門參加考試(),每科目滿分.為了應對新高考,某高中從高一年級名學生(其中男生人,女生人)中,采用分層抽樣的方法從中抽取n名學生進行調查.

1)已知抽取的n名學生中含女生人,求n的值及抽取到的男生人數(shù);

2)學校計劃在高一上學期開設選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下面表格是根據(jù)調查結果得到的列聯(lián)表,請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為選擇科目與性別有關?說明你的理由;

選擇“物理”

選擇“歷史”

總計

男生

10

女生

30

總計

3)在抽取到的名女生中,在(2)的條件下,按選擇的科目進行分層抽樣,抽出名女生,了解女生對“歷史”的選課意向情況,在這名女生中再抽取人,求這人中選擇“歷史”的人數(shù)為人的概率.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),.

1)討論函數(shù)的單調性;

2)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左、右焦點分別為,離心率為,過焦點且垂直于軸的直線被橢圓截得的線段長為

(Ⅰ)求橢圓的方程;

(Ⅱ)點為橢圓上一動點,連接、,設的角平分線交橢圓的長軸于點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù),下列選項正確的是(

A.是函數(shù)的零點

B.,使

C.函數(shù)的值域為

D.若關于的方程有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是

查看答案和解析>>

同步練習冊答案