精英家教網 > 高中數學 > 題目詳情
已知數列{an}是各項均不為0的等差數列,公差為d,Sn為其前 n項和,且滿足
a2n
=S2n-1
,n∈N*.數列{bn}滿足bn=
1
anan+1
,Tn為數列{bn}的前n項和.
(1)求數列{an}的通項公式an和數列{bn}的前n項和Tn;
(2)若對任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實數λ的取值范圍;
(3)是否存在正整數m,n(1<m<n),使得T1,Tm,Tn成等比數列?若存在,求出所有m,n的值;若不存在,請說明理由.
(1)在
a2n
=S2n-1
中,令n=1,n=2,
a12=S1
a22=S3
,即
a12=a1
(a1+d)2=3a1+3d
        …(1分)
解得a1=1,d=2,∴an=2n-1
又∵an=2n-1時,Sn=n2滿足
a2n
=S2n-1
,∴an=2n-1…(2分)
bn=
1
anan+1
=
1
2
(
1
2n-1
-
1
2n+1
)
,
∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
n
2n+1
.   …(4分)
(2)①當n為偶數時,要使不等式λTn<n+8•(-1)n恒成立,即需不等式λ<
(n+8)(2n+1)
n
=2n+
8
n
+17
恒成立.    …(5分)
2n+
8
n
≥8,等號在n=2時取得.
∴此時λ 需滿足λ<25.              …(6分)
②當n為奇數時,要使不等式λTn<n+8•(-1)n恒成立,即需不等式λ<
(n-8)(2n+1)
n
=2n-
8
n
-15
恒成立.      …(7分)
2n-
8
n
是隨n的增大而增大,∴n=1時,2n-
8
n
取得最小值-6.
∴此時λ 需滿足λ<-21.            …(8分)
綜合①、②可得λ的取值范圍是λ<-21. …(9分)
(3)T1=
1
3
, Tm=
m
2m+1
, Tn=
n
2n+1
,
若T1,Tm,Tn成等比數列,則(
m
2m+1
)2=
1
3
(
n
2n+1
)
,
m2
4m2+4m+1
=
n
6n+3
.                           …(10分)
m2
4m2+4m+1
=
n
6n+3
,可得
3
n
=
-2m2+4m+1
m2
>0
,即-2m2+4m+1>0,
1-
6
2
<m<1+
6
2
.                 …(11分)
又m∈N,且m>1,所以m=2,此時n=12…(12分)
因此,當且僅當m=2,n=12時,數列T1,Tm,Tn中的T1,Tm,Tn成等比數列.…(13分)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網若一個數列各項取倒數后按原來的順序構成等差數列,則稱這個數列為調和數列.已知數列{an}是調和數列,對于各項都是正數的數列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數列{xn}是等比數列;
(Ⅱ)把數列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數表,當x3=8,x7=128時,求第m行各數的和;
(Ⅲ)對于(Ⅱ)中的數列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•南匯區(qū)二模)已知數列{an}中,若2an=an-1+an+1(n∈N*,n≥2),則下列各不等式中一定成立的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若一個數列各項取倒數后按原來的順序構成等差數列,則稱這個數列為調和數列.已知數列{an}是調和數列,對于各項都是正數的數列{xn},滿足數學公式(n∈N*).
(Ⅰ)證明數列{xn}是等比數列;
(Ⅱ)把數列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數表,當x3=8,x7=128時,求第m行各數的和;
(Ⅲ)對于(Ⅱ)中的數列{xn},證明:數學公式

查看答案和解析>>

科目:高中數學 來源:2010年北京市朝陽區(qū)高考數學一模試卷(理科)(解析版) 題型:解答題

若一個數列各項取倒數后按原來的順序構成等差數列,則稱這個數列為調和數列.已知數列{an}是調和數列,對于各項都是正數的數列{xn},滿足(n∈N*).
(Ⅰ)證明數列{xn}是等比數列;
(Ⅱ)把數列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數表,當x3=8,x7=128時,求第m行各數的和;
(Ⅲ)對于(Ⅱ)中的數列{xn},證明:

查看答案和解析>>

科目:高中數學 來源:2010年北京市朝陽區(qū)高考數學一模試卷(文科)(解析版) 題型:解答題

若一個數列各項取倒數后按原來的順序構成等差數列,則稱這個數列為調和數列.已知數列{an}是調和數列,對于各項都是正數的數列{xn},滿足(n∈N*).
(Ⅰ)證明數列{xn}是等比數列;
(Ⅱ)把數列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數表,當x3=8,x7=128時,求第m行各數的和;
(Ⅲ)對于(Ⅱ)中的數列{xn},證明:

查看答案和解析>>

同步練習冊答案