【題目】如圖,在四面體中,平面,.,.M是的中點(diǎn),P是的中點(diǎn),點(diǎn)Q在線段上,且.
(1)證明:;
(2)若二面角的大小為60°,求的大小.
【答案】(1)證明見解析(2)
【解析】
(1)以的中點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)出C的坐標(biāo),然后算出和的坐標(biāo),證明即可;
(2)算出平面的一個(gè)法向量,利用二面角的大小為60°求出C的坐標(biāo)即可.
(1)證明:如圖,取的中點(diǎn)O,以O為原點(diǎn),,所在射線y,z軸的正半軸,建立空間直角坐標(biāo)系.
由題意知
設(shè)點(diǎn)C的坐標(biāo)為,
因?yàn)?/span>,
所以
因?yàn)辄c(diǎn)M為的中點(diǎn),故
又點(diǎn)P為的中點(diǎn),故
所以,
所以.
(2)解:設(shè)為平面的一個(gè)法向量
由,
知
取,得.
又平面的一個(gè)法向量為,于是
即.①
又,所以,
故
即.②
聯(lián)立①②,解得(舍去)或.
所以.
又是銳角,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).
(1)求拋物線的方程;
(2)若直線的斜率之積為,求證:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.若直線a,b與平面所成角都是30°,則這兩條直線平行
B.若直線a與平面、平面所成角相等,則
C.若平面內(nèi)不共線三點(diǎn)到平面的距離相等,則
D.已知二面角的平面角為120°,P是l上一定點(diǎn),則一定存在過點(diǎn)P的平面,使與,與所成銳二面角都為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高二年級的第二學(xué)期,因某學(xué)科的任課教師王老師調(diào)動(dòng)工作,于是更換了另一名教師趙老師繼任.第二學(xué)期結(jié)束后從全學(xué)年的該門課的學(xué)生考試成績中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如下:
學(xué)校秉持均衡發(fā)展、素質(zhì)教育的辦學(xué)理念,對教師的教學(xué)成績實(shí)行績效考核,績效考核方案規(guī)定:每個(gè)學(xué)期的學(xué)生成績中與其中位數(shù)相差在范圍內(nèi)(含)的為合格,此時(shí)相應(yīng)的給教師賦分為1分;與中位數(shù)之差大于10的為優(yōu)秀,此時(shí)相應(yīng)的給教師賦分為2分;與中位數(shù)之差小于-10的為不合格,此時(shí)相應(yīng)的給教師賦分為-1分.
(Ⅰ)問王老師和趙老師的教學(xué)績效考核成績的期望值哪個(gè)大?
(Ⅱ)是否有的把握認(rèn)為“學(xué)生成績?nèi)〉脙?yōu)秀與更換老師有關(guān)”.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓是長軸的一個(gè)端點(diǎn),弦過橢圓的中心O,點(diǎn)C在第一象限,且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P、Q為橢圓上不重合的兩點(diǎn)且異于A、B,若的平分線總是垂直于x軸,問是否存在實(shí)數(shù),使得?若不存在,請說明理由;若存在,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),把函數(shù)的圖象向右平移個(gè)單位,再把圖象上各點(diǎn)的橫坐標(biāo)縮小到原來的一半,縱坐標(biāo)不變,得到函數(shù)的圖象,當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對本班60人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運(yùn)動(dòng) | 不喜好體育運(yùn)動(dòng) | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 60 |
已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為12的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為7.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(2)若恒成立,求的取值范圍;
(3)已知,證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com