(本題滿(mǎn)分15分)已知過(guò)點(diǎn),0)()的動(dòng)直線交拋物線、兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng).(I)當(dāng)時(shí),求證:

(II)對(duì)于給定的正數(shù),是否存在直線,使得被以為直徑的圓所截得的弦長(zhǎng)為定值?如果存在,求出的方程;如果不存在,試說(shuō)明理由.

(Ⅰ) 見(jiàn)解析  (Ⅱ) 所以當(dāng)時(shí),存在直線,截得的弦長(zhǎng)為,

   當(dāng)時(shí),不存在滿(mǎn)足條件的直線


解析:

方法一:(I)設(shè),

     …………………………………………………………3 分

==0

               ………………………………………………6 分

方法二:過(guò)A、B分別作準(zhǔn)線的垂線,垂足分別為、,

……………………………………………………6 分

(II)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

假設(shè)滿(mǎn)足條件的直線存在,直線被圓截得的弦為,則

 

                   ………………10分

弦長(zhǎng)為定值,則,即,

此時(shí),                          ………………12分

所以當(dāng)時(shí),存在直線,截得的弦長(zhǎng)為

   當(dāng)時(shí),不存在滿(mǎn)足條件的直線…………………………………………15 分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省余姚中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(帶解析) 題型:解答題

(本題滿(mǎn)分15分)已知點(diǎn)(0,1),,直線、都是圓的切線(點(diǎn)不在軸上).
(Ⅰ)求過(guò)點(diǎn)且焦點(diǎn)在軸上的拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)(1,0)作直線與(Ⅰ)中的拋物線相交于兩點(diǎn),問(wèn)是否存在定點(diǎn)使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)及常數(shù);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省揚(yáng)州市高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分15分)

已知命題p,命題q. 若“pq”為真命題,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分15分)已知函數(shù)

(Ⅰ)若為定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;

(Ⅲ)當(dāng),且時(shí),證明:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三下學(xué)期2月模擬考試文科數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點(diǎn)A,B,

(1)當(dāng)直線的斜率為1時(shí),求線段AB的長(zhǎng);

(2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線對(duì)稱(chēng),問(wèn)是否存在直線使得?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測(cè) 題型:解答題

(本題滿(mǎn)分15分)已知直線,曲線

   (1)若且直線與曲線恰有三個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值;

   (2)若,直線與曲線M的交點(diǎn)依次為A,B,C,D四點(diǎn),求|AB+|CD|的取值范圍。[來(lái)源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案