求由曲線y=2-x2與直線y=2x+2圍成圖形的面積.
考點:定積分在求面積中的應用
專題:導數(shù)的綜合應用,排列組合
分析:先聯(lián)立方程,組成方程組,求得交點坐標,可得被積區(qū)間,再用定積分表示出曲線y=2-x2與直線y=2x+2圍成圖形的面積,即可求得結論.
解答: 解:由
y=2-x2
y=2x+2
可得,
x=0
y=2
x=-2
y=-2

∴曲線y=2-x2與直線y=2x+2圍成圖形的面積
0
-2
[2-x2-(2x+2)]dx
=
0
-2
(-x2-2x)dx
=(-
1
3
x3-x2)
|
0
-2
=
4
3
點評:本題考查利用定積分求面積,解題的關鍵是確定被積區(qū)間及被積函數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

雙曲線mx2+y2=1的離心率e=
5
,則m為( 。
A、-
1
4
B、-4
C、4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=x+2與曲線
y2
2
-
x|x|
2
=1的交點個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在研究色盲與性別的關系調(diào)查中,調(diào)查了男性480人,其中有38人患色盲,調(diào)查的520個女性中6人患色盲,
(1)根據(jù)以上的數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)能否有99.9%的把握認為“性別與患色盲有關系”?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sinα是5x2-7x-6=0的根,求
sin(-α-
3
2
π)•sin(
3
2
π-α)•tan2(2π-α)
cos(
π
2
-α)•cos(
π
2
+α)•sin(3π+α)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學校隨機抽取部分新生調(diào)查其上學所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學所需時間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100).
(Ⅰ)求直方圖中x的值;
(Ⅱ)如果上學所需時間不少于1小時的學生可申請在學習住宿,若該學校有600名新生,請估計新生中有多少名學生可以申請住宿;
(Ⅲ)由頻率分布直方圖估計該校新生上學所需時間的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平面直角坐標系xOy中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0),右頂點為D(2,0),設點A(1,
1
2
).
(1)求該橢圓的標準方程;
(2)已知直線l與橢圓相交弦BC的中點為A,求直線l的方程;
(3)求△FBC的面積S△FBC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=-
1
3
x3+
1
2
ax2+2a2x(a∈R).
(Ⅰ)若f(x)在(
2
3
,+∞)上存在單調(diào)遞增區(qū)間,求實數(shù)a的取值范圍;
(Ⅱ)設函數(shù)g(x)=f(x)+
1
2
(1-a)x2+2a(1-a)x,若0<a<2,g(x)在[1,4]上的最小值為-
16
3
,求g(x)在該區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A′B′C′D′中,E是AA′棱的中點.求平面BEC′與平面ABCD所成的角的余弦值.

查看答案和解析>>

同步練習冊答案