<i id="nxjjy"><video id="nxjjy"><button id="nxjjy"></button></video></i>
  • <small id="nxjjy"><noframes id="nxjjy"><small id="nxjjy"></small>
  • <dl id="nxjjy"><dfn id="nxjjy"><table id="nxjjy"></table></dfn></dl>
    <code id="nxjjy"><pre id="nxjjy"><tt id="nxjjy"></tt></pre></code>
    • <tfoot id="nxjjy"><legend id="nxjjy"><form id="nxjjy"></form></legend></tfoot>
      <pre id="nxjjy"></pre>

      設(shè)函數(shù)f(x)=x2-2|x|-3(-3≤x≤3),
      (1)證明函數(shù)f(x)是偶函數(shù);
      (2)用分段函數(shù)表示f(x)并作出其圖象;
      (3)指出函數(shù)f(x)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性;
      (4)求函數(shù)的值域.

      解:(1)∵-3≤x≤3,
      ∴函數(shù)的定義域關(guān)于原點(diǎn)對稱,
      又∵f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x)
      ∴函數(shù)f(x)是偶函數(shù).
      (2)f(x)=
      (3)由(2)中圖象可得:
      函數(shù)f(x)的單調(diào)增區(qū)間是[-1,0],[1,3];
      函數(shù)f(x)的單調(diào)減區(qū)間是[-3,-1],[0,1].
      (4)由(2)中圖象可得:
      函數(shù)的值域是[-4,0].
      分析:(1)根據(jù)函數(shù)奇偶性的定義,我們先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,然后再判斷f(-x)與f(x)的關(guān)系,若f(-x)與f(x)相等則函數(shù)f(x)是偶函數(shù);
      (2)由于函數(shù)的解析式中,含有絕對值符合,我們可以用零點(diǎn)分段法,即分0≤x≤3主-3≤x<0兩種情況,進(jìn)行分類討論,易得函數(shù)的解析式,然后根據(jù)分段函數(shù)的圖象分段畫的原則,易得到函數(shù)的圖象.
      (3)由函數(shù)圖象,根據(jù)圖象上升,函數(shù)遞增,圖象下降,函數(shù)遞減的原則,確定函數(shù)的單調(diào)區(qū)間;
      (4)由函數(shù)圖象,易得到函數(shù)最高點(diǎn),最低點(diǎn)坐標(biāo),進(jìn)而得到函數(shù)的值域.
      點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)的圖象,函數(shù)的單調(diào)性及單調(diào)區(qū)間,及函數(shù)的奇偶性的判斷,利用零點(diǎn)分段法將函數(shù)的解析式化為分段函數(shù),并畫出函數(shù)的圖象是解答本題的關(guān)鍵.
      練習(xí)冊系列答案
      相關(guān)習(xí)題

      科目:高中數(shù)學(xué) 來源: 題型:

      設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
      (1)判斷函數(shù)f(x)的奇偶性;
      (2)求函數(shù)f(x)的最小值.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源: 題型:

      設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,則實(shí)數(shù)a的取值范圍是
       

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源: 題型:

      設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
      1x+1
      ).
      (1)討論f(x)的單調(diào)性.
      (2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源: 題型:

      設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
      (1)若曲線y=f(x)在x=1處的切線為y=x,求實(shí)數(shù)m的值;
      (2)當(dāng)m=2時(shí),若方程f(x)-h(x)=0在[1,3]上恰好有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
      (3)是否存在實(shí)數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說明理由.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源: 題型:

      設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
      (1)若a=-6,求f(x)在[0,3]上的最值;
      (2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
      (3)求證:不等式ln
      n+1
      n
      n-1
      n3
      (n∈N*)恒成立.

      查看答案和解析>>

      同步練習(xí)冊答案