在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),已知點(diǎn)A(3 , 
3
)
,點(diǎn)P(x,y)的坐標(biāo)滿足
3
x-y≤0
x-
3
y+2≥0
y≥0
,設(shè)z為
OA
OP
上的投影,則z的取值范圍是
 
分析:先根據(jù)約束條件畫(huà)出可行域,設(shè)z為
OA
OP
上的投影,再利用z的幾何意義求范圍,只需求出向量
OA
OP
的夾角的余弦值的取值范圍即可,從而得到z值即可.
解答:精英家教網(wǎng)解:z=
OA
OP
|
OP
|
=|
OA
|•cos∠AOP
=2
3
cos∠AOP

∠AOP∈[
π
6
 , 
6
]
,
∴當(dāng) ∠AOP=
π
6
時(shí),zmax=2
3
cos
π
6
=3,
當(dāng) ∠AOP=
6
時(shí),zmin=2
3
cos
6
=-3,
∴z的取值范圍是[-3,3].
∴故答案為:[-3,3].
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.巧妙識(shí)別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問(wèn)題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線性的與非線性,非線性問(wèn)題的介入是線性規(guī)劃問(wèn)題的拓展與延伸,使得規(guī)劃問(wèn)題得以深化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫(xiě)出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果k與b都是無(wú)理數(shù),則直線y=kx+b不經(jīng)過(guò)任何整點(diǎn)
③直線l經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案