【題目】某校高一學(xué)生共有500人,為了了解學(xué)生的歷史學(xué)習(xí)情況,隨機抽取了50名學(xué)生,對他們一年來4次考試的歷史平均成績進行統(tǒng)計,得到頻率分布直方圖如圖所示,后三組頻數(shù)成等比數(shù)列.
(1)求第五、六組的頻數(shù),補全頻率分布直方圖;
(2)若每組數(shù)據(jù)用該組區(qū)間中點值(例如區(qū)間[70,80)的中點值是
75作為代表,試估計該校高一學(xué)生歷史成績的平均分;
(3)估計該校高一學(xué)生歷史成績在70~100分范圍內(nèi)的人數(shù).
【答案】解:(1)設(shè)第五、六組的頻數(shù)分別為x,y
由題設(shè)得,
第四組的頻數(shù)是0.024×10×50=12
則x2=12y
又x+y=50﹣(0.012+0.016+0.03+0.024)×10×50即x+y=9
∴x=6,
y=3
補全頻率分布直方圖
(2)該校高一學(xué)生歷史成績的平均分
=(45x0.012+55x0.016+65x0.03+75x0.024+95x0.006)=67.6
(3)該校高一學(xué)生歷史成績在70~100分范圍內(nèi)的人數(shù):
500×(0.024+0.012+0.006)×10=210
【解析】(1)利用頻率分布直方圖中利用縱坐標(biāo)乘以組距求出第四組的頻率,利用頻率乘以樣本容量求出頻數(shù),利用等比數(shù)列的中項列出方程求出第五、六組的頻數(shù).
(2)利用各個小矩形的中點乘以各個矩形的面積求出高一學(xué)生歷史成績在70~100分范圍內(nèi)的人數(shù).
【考點精析】解答此題的關(guān)鍵在于理解用樣本的數(shù)字特征估計總體的數(shù)字特征的相關(guān)知識,掌握用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差.在隨機抽樣中,這種偏差是不可避免的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R),
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上不單調(diào),求實數(shù)a的取值范圍;
(2)記M(a,b)是|f(x)|在區(qū)間[﹣1,1]上的最大值,證明:當(dāng)|a|≥2時,M(a,b)≥2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃銷售某種產(chǎn)品,現(xiàn)邀請生產(chǎn)該產(chǎn)品的甲、乙兩個廠家進場試銷10天,兩個廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣出一件產(chǎn)品廠家再返利2元;乙廠家無固定返利,賣出40件以內(nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.經(jīng)統(tǒng)計,兩個廠家10天的試銷情況莖葉圖如下:
(Ⅰ)現(xiàn)從廠家試銷的10天中抽取兩天,求這兩天的銷售量都大于40的概率;
(Ⅱ)若將頻率視作概率,回答以下問題:
(。┯浺覐S家的日返利額為(單位:元),求的分布列和數(shù)學(xué)期望;
(ⅱ)商場擬在甲、乙兩個廠家中選擇一家長期銷售,如果僅從日返利額的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為商場做出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于統(tǒng)計數(shù)據(jù)的分析,有以下幾個結(jié)論,其中正確的個數(shù)為( 。
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,平均數(shù)與方差均沒有變化;
②在線性回歸分析中,相關(guān)系數(shù)r越小,表明兩個變量相關(guān)性越弱;
③某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為15人.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= +x,x∈[3,5].
(1)判斷函數(shù)f(x)的單調(diào)性,并利用單調(diào)性定義證明;
(2)求函數(shù)f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x2﹣mx(m>0)在區(qū)間[0,2]上的最小值記為g(m)
(1)若0<m≤4,求函數(shù)g(m)的解析式;
(2)定義在(﹣∞,0)∪(0,+∞)的函數(shù)h(x)為偶函數(shù),且當(dāng)x>0時,h(x)=g(x),若h(t)>h(4),求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b)滿足f(x0)= ,則稱函數(shù)y=f(x)在區(qū)間[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.若函數(shù)f(x)=﹣x2+mx+1是[﹣1,1]上的平均值函數(shù),則實數(shù)m的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的有( )
①命題x∈R,使sin x+cos x= 的否定是“對x∈R,恒有sin x+cos x≠ ”;
②“a≠1或b≠2”是“a+b≠3”的充要條件;
③若曲線C上的所有點的坐標(biāo)都滿足方程f(x,y)=0,則稱方程f(x,y)=0是曲線C的方程;
④十進制數(shù)66化為二進制數(shù)是1 000 010(2) .
A.①②③④
B.①④
C.②③
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的左、右焦點分別為, ,點在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個不同交點時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com