在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為。
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線交于點A、B,若點P的坐標(biāo)為,求|PA|+|PB|。
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程
(1)求曲線C的普通方程;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線L的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點的橢圓C:的一個焦點為,為橢圓C上一點,的面積為.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線,使得直線與橢圓C相交于A,B兩點,且以線段AB為直徑的圓恰好經(jīng)過原點?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓和圓:,過橢圓上一點P引圓O的兩條切線,切點分別為A,B.
(1)(ⅰ)若圓O過橢圓的兩個焦點,求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點P,使得,求橢圓離心率e的取值范圍;
(2)設(shè)直線AB與x軸、y軸分別交于點M,N,問當(dāng)點P在橢圓上運動時,是否為定值?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,以坐標(biāo)原點為幾點,軸的正半軸為極軸建立極坐標(biāo)系.已知直線上兩點的極坐標(biāo)分別為,圓的參數(shù)方程(為參數(shù)).
(Ⅰ)設(shè)為線段的中點,求直線的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓與拋物線的焦點均在軸上,的中心及的頂點均為原點,從每條曲線上各取兩點,將其坐標(biāo)記錄于下表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動點到點的距離與到直線的距離之比為定值,記的軌跡為.
(1)求的方程,并畫出的簡圖;
(2)點是圓上第一象限內(nèi)的任意一點,過作圓的切線交軌跡于,兩點.
(i)證明:;
(ii)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在坐標(biāo)原點焦點在軸上的橢圓C,其長軸長等于4,離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左焦點F為圓的圓心,且橢圓上的點到點F的距離最小值為。
(I)求橢圓方程;
(II)已知經(jīng)過點F的動直線與橢圓交于不同的兩點A、B,點M(),證明:為定值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com