冪函數(shù)f(x)=(m2-2m-2)xm+
1
2
m2
在(0,+∞)是增函數(shù),則m=
 
考點(diǎn):冪函數(shù)圖象及其與指數(shù)的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)題意,列出方程(不等式)組,求出m的值.
解答: 解:∵f(x)=(m2-2m-2)xm+
1
2
m2
是冪函數(shù),
且在(0,+∞)上是增函數(shù),
m2-2m-2=1
m+
1
2
m
2
>0
;
解得m=3.
故答案為:3.
點(diǎn)評(píng):本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)冪函數(shù)的定義以及函數(shù)的圖象與性質(zhì),列出方程(不等式)組,即可解答,是容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于下列三個(gè)命題
①函數(shù)y=x+
1
x
(x≠0)的最小值是2;
②?x∈R,x2+x+1<0;
③若?x∈R,滿足x2+bx+c<0,則b2-4c>0;
你認(rèn)為其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x),當(dāng)x∈(0,+∞)時(shí),f(x)>0且2f(x)+xf′(x)>0,有下列命題:
①f(x)在R上是增函數(shù);           
②當(dāng)x1>x2時(shí),x12f(x1)>x22f(x2
③當(dāng)x1>x2>0時(shí),
x12
f(x2)
x22
f(x1)

④當(dāng)x1+x2>0時(shí),x12f(x1)+x22f(x2)>0
⑤當(dāng)x1>x2時(shí),x12f(x2)>x22f(x1
則其中正確的命題是
 
(寫出你認(rèn)為正確的所有命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某林場(chǎng)為了及時(shí)發(fā)現(xiàn)火情,在林場(chǎng)中設(shè)立了兩個(gè)觀測(cè)點(diǎn)A和B,某日兩個(gè)觀測(cè)點(diǎn)的林場(chǎng)人員分別觀測(cè)到C處有險(xiǎn)情.在A處觀測(cè)到火情發(fā)生在北偏西45°方向,在B點(diǎn)觀測(cè)火場(chǎng)C在北偏西75°方向,已知B在A的正東方向10km處,那么火場(chǎng)C到觀測(cè)點(diǎn)A的距離為
 
km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四邊形ABCD為菱形,邊長(zhǎng)為1,∠BAD=120°,
AE
=
AD
+t
AB
(其中t∈R且0<t<1),則當(dāng)|
AE
|最小時(shí),
|
DE
|
|
EC
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(1-2x)10=a0+a1x+a2x2+…+a10x10,則
a1
2
+
a2
22
+…+
a10
210
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=asinx+cosx在[
π
6
,
π
4
]上單調(diào)遞增,則a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,令y=f(x),若f(a)>1,則a是取值范圍是
 
. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
πx(x≥0)
ex(x<0)
,若任意x∈[1-2a,2a-1]滿足不等式f(a(x+1)-x)≥[f(x)]a恒成立,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案