某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元) 8 8.2 8.4 8.6 8.8 9
銷量y(件) 90 84 83 80 75 68
由表中數(shù)據(jù),求得線性回歸方程為y=-20x+a.若在這些樣本點中任取一點,則它在回歸直線左下方的概率為
 
分析:根據(jù)已知中數(shù)據(jù)點坐標,我們易求出這些數(shù)據(jù)的數(shù)據(jù)中心點坐標,進而求出回歸直線方程,判斷各個數(shù)據(jù)點與回歸直線的位置關系后,求出所有基本事件的個數(shù)及滿足條件兩點恰好在回歸直線下方的基本事件個數(shù),代入古典概率公式,即可得到答案.
解答:精英家教網(wǎng)解:
.
x
=
8+8.2+8.4+8.6+8.8+9
6
=8.5,
.
y
=
90+84+83+80+75+68
6
=80
∵b=-20,a=
y
-b
.
x
,
∴a=80+20×8.5=250
∴回歸直線方程
y
=-20x+250;
數(shù)據(jù)(8,90),(8.2,84),(8.4,83),(8.6,80),(8.8,75),(9,68).
當x=8時,∵90<-20×8+250,∴點(2,20)在回歸直線下方;

如圖,6個點中有2個點在直線的下側(cè).
則其這些樣本點中任取1點,共有6種不同的取法,
其中這兩點恰好在回歸直線兩側(cè)的共有2種不同的取法,
故這點恰好在回歸直線下方的概率P=
2
6
=
1
3

故答案為:
1
3
點評:本題考查的知識是等可能性事件的概率及線性回歸方程,求出回歸直線方程,判斷各數(shù)據(jù)點與回歸直線的位置關系,并求出基本事件的總數(shù)和滿足某個事件的基本事件個數(shù)是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元) 8 8.2 8.4 8.6 8.8 9
銷量y(件) 90 84 83 80 75 68
(1)求回歸直線方程
y
=bx+a
,其中b=-20,a=
.
y
-b
.
x
;并據(jù)此預測當銷售單價定為9.5元時銷量約為多少件?
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是 7元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福建)某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元) 8 8.2 8.4 8.6 8.8 9
銷量y(件) 90 84 83 80 75 68
(Ⅰ)求回歸直線方程
y
=bx+a,其中b=-20,a=
y
-b
.
x
;
(Ⅱ)預計在今后的銷售中,銷量與單價仍然服從(I)中的關系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到數(shù)據(jù)如下表:
單價x(元) 8 8.2 8.4 8.6 8.8 9
銷量y(件) 90 84 83 80 75 68
(Ⅰ)根據(jù)上表可得回歸方程
?
y
=bx+a
中的b=-20,據(jù)此模型預報單價為10元時的銷量為多少件?
(Ⅱ)預計在今后的銷售中,銷量與單價仍然服從(Ⅰ)中的關系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元)     8    8.2    8.4    8.6    8.8    9
銷量y(件)    90    84    83    80     75    68
(1)求回歸直線方程
y
=bx+a,其中b=-20,a=
.
y
-b
.
x
 
(2)預計在今后的銷售中,銷量與單價仍然服從1)中的關系,要使銷量不低于100件,該產(chǎn)品的單價最多定為多少元?

查看答案和解析>>

同步練習冊答案