精英家教網 > 高中數學 > 題目詳情
如圖所示,直三棱柱ABC-A1B1C1中,AB⊥AC,D,E分別為AA1,B1C的中點,若記
AB
=
a
,
AC
=
b
,
AA
=
c
,則
DE
=
1
2
a
+
1
2
b
1
2
a
+
1
2
b
(用
a
,
b
c
表示).
分析:根據所給的圖象,先由三角形法則得到=
DA1
+
A1E
,再用
AB
、
AC
、
AA
表示出來,即可得到答案
解答:解:
DE
=
DA1
+
A1E

=
1
2
AA1
+
1
2
A1B1
+
A1C

=
1
2
AA1
+
1
2
AB
+
AC
-
AA1

=
1
2
c
+
1
2
a
+
b
-
c

=
1
2
a
+
1
2
b

故答案為
1
2
a
+
1
2
b
點評:本題考查向量的加法與減法計算,解答的關鍵是找到向量所在的三角形,利用三角形法則運算
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖所示,直三棱柱ABC-A1B1C1的各條棱長均為a,D是側棱CC1的中點.
(1)求證:平面AB1D⊥平面ABB1A1;
(2)求異面直線AB1與BC所成角的余弦值;
(3)求平面AB1D與平面ABC所成二面角(銳角)的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,直三棱柱ABC-A'B'C'中,∠BCA=90°,CA=CB=1,AA'=2,M,N分別是A'B'、A'A的中點.
(1)求證:A'B⊥C'M;
(2)求異面直線BA'與CB'所成交的大。
(3)(理)求BN與平面CNB'所稱的角的大。
(4)(理)求二面角A-BN-C的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,直三棱柱ABCA1B1C1中,底面是等腰直角三角形,∠ACB=90°,AC=1,AA1=,點DAB的中點.

(1)求證:CD⊥平面ABB1A1;

(2)求二面角A-A1B-C的平面角的正切值;

(3)求三棱錐B1A1BC的體積;

(4)求BC1與平面A1BC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在直三棱柱ABCA1B1C1中,∠ABC=90°,D為棱AC的中點,且AB=BC=BB1=a.

(1)求證:AB1∥平面BC1D;

(2)求異面直線AB1BC1所成的角;

(3)求點A到平面BC1D的距離.

查看答案和解析>>

同步練習冊答案