已知圓的方程為,定直線的方程為.動圓與圓外切,且與直線相切.
(1)求動圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點, 過點作直線的垂線恰好經(jīng)過點,并交軌跡于異于點的點,求直線的方程及的長.
(1);(2)直線PQ的方程:x+y-6=0,|PQ|=

試題分析:(1)設圓心C的坐標為(x,y),根據(jù)題意可以得到關于x,y的方程組,消去參數(shù)以后即可得到x,y所滿足的關系式,即圓心C的軌跡M的方程;(2)設點P的坐標為,根據(jù)題意可以把l’用含x0的代數(shù)式表示出來,由經(jīng)過點A(0,6)可以求得點P的坐標與l’的方程,再聯(lián)立(1)中M的軌跡方程,即可求出Q的坐標,從而得到|PQ|d的長.
(1)設動圓圓心C的坐標為(x,y),動圓半徑為R,則 ,且
|y+1|="R"       2分,可得
由于圓C1在直線l的上方,所以動圓C的圓心C應該在直線l的上方,所以有y+1>0,從而得,整理得,即為動圓圓心C的軌跡M的方程.      5分
(2)如圖示,設點P的坐標為,則切線的斜率為,可得直線PQ的斜率為,所以直線PQ的方程為.由于該直線經(jīng)過點A(0,6),所以有,得.因為點P在第一象限,所以,點P坐標為(4,2),直線PQ的方程為x+y-6=0.——9分
把直線PQ的方程與軌跡M的方程聯(lián)立得,解得x=-12或4
        12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知拋物線,過點任作一直線與相交于兩點,過點軸的平行線與直線相交于點為坐標原點).

(1)證明:動點在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點,與(1)中的定直線相交于點,證明:為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線的方程為,過原點作斜率為的直線和曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,如此下去,一般地,過點作斜率為的直線與曲線相交,另一個交點記為,設點).
(1)指出,并求的關系式();
(2)求)的通項公式,并指出點列,,,向哪一點無限接近?說明理由;
(3)令,數(shù)列的前項和為,試比較的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)直線l:y=x+b與拋物線C:x2=4y相切于點A,求實數(shù)b的值,及點A的坐標.
(2)在拋物線y=4x2上求一點,使這點到直線y=4x-5的距離最短.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設雙曲線的兩個焦點為,,一個頂點式,則的方程為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線L:與橢圓E: 相交于A,B兩點,該橢圓上存在點P,使得
△ PAB的面積等于3,則這樣的點P共有(   )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓的方程為右焦點為,方程的兩實根分別為,則(   )
A.必在圓
B.必在圓
C.必在圓
D.必在圓與圓形成的圓環(huán)之間

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓的圓心在坐標原點,且恰好與直線相切,設點A為圓上一動點,軸于點,且動點滿足,設動點的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(2014·黃岡模擬)如圖,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B為焦點,且過點D的雙曲線的離心率為e1;以C,D為焦點,且過點A的橢圓的離心率為e2,則e1+e2的取值范圍為(  )
A.[2,+∞)B.(,+∞)
C.D.(+1,+∞)

查看答案和解析>>

同步練習冊答案