(本題滿分12分)
已知ABCD是矩形,AD=4,AB=2,E、F分別是線段AB、BC的中點(diǎn),PA⊥面ABCD。
(1)證明:PF⊥FD;
(2)在PA上是否存在點(diǎn)G,使得EG//平面PFD。
在AP上存在點(diǎn)G,且
(1)證明:連結(jié)AF,

∵在矩形ABCD中,AD=4,AB=2,F(xiàn)是線段BC的中點(diǎn),
∴FC=CD,∴△FCD是等腰直角三角形,∴∠DFC=45°,同理可得∠AFB=45°,
∴AF⊥FD。
又∵PA⊥面ABCD,∴PA⊥FD,∵AF∩PA=A
∴FD⊥平面PAF,∴PF⊥FD!6分
(2)在AP上存在點(diǎn)G,
,使得EG//平面PFD,
證明:取AD中點(diǎn)I,取AI中點(diǎn)H,連結(jié)BI,EH,EG,GH,
四邊形BFDI是平行四邊形,
∴BI//FD
又∵E、H分別是AB、AI的中點(diǎn),
∴EH//BI,∴EH//FD
而EH平面PFD,∴EH//平面PFD
,∴GH//PD
而GH平面PFD,∴HG//平面PFD。
又∵EH∩GH=H,
∴平面EHG//平面PFD,
∴EG//平面PFD。
從而點(diǎn)G為所求 ………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)
如圖,在直三棱柱中,,點(diǎn)在邊上,。
(1)求證:平面;
(2)如果點(diǎn)的中點(diǎn),求證:平面 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((10分)如圖所示,在四棱錐PABCD中,底面為直角梯形,ADBC,BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分別為PCPB的中點(diǎn).

(1)求證:PBDM;
(2)求BD與平面ADMN所成的角.                          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在正方體ABCDA1B1C1D1中,M、N分別是棱ABCC1的中點(diǎn),△MB1P的頂點(diǎn)P在棱CC1與棱C1D1上運(yùn)動(dòng),
有以下四個(gè)命題:
A.平面MB1PND1;
B.平面MB1P⊥平面ND1A1;
C.△MB1P在底面ABCD上的射影圖形的面積為定值;
D.△MB1P在側(cè)面D1C1CD上的射影圖形是三角形.
其中正確命題的序號(hào)是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正方體上任意選擇4個(gè)頂點(diǎn),由這4個(gè)頂點(diǎn)可能構(gòu)成如下幾何體:
①有三個(gè)面為全等的等腰直角三角形,有一個(gè)面為等邊三角形的四面體;
②每個(gè)面都是等邊三角形的四面體;
③每個(gè)面都是直角三角形的四面體;
④有三個(gè)面為不全等的直角三角形,有一個(gè)面為等邊三角形的四面體。
以上結(jié)論其中正確的是              (寫出所有正確結(jié)論的編號(hào))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中正確命題的個(gè)數(shù)是                                                              ( 。
①經(jīng)過空間一點(diǎn)一定可作一平面與兩異面直線都平行;
②已知平面,直線a、b,若,,則;
③有兩個(gè)側(cè)面垂直于底面的四棱柱為直四棱柱;
④四個(gè)側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
⑥底面是等邊三角形,∠APB=∠BPC=∠CPA,則三棱錐PABC是正三棱錐.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

三棱錐中,,,,,若四點(diǎn)在同一個(gè)球面上,則在球面上兩點(diǎn)之間的球面距離是_____ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體ABCD–A1B1C1D1中,M,N分別為棱AA1和B1B的中點(diǎn),若θ為直線CM與所成的角,則="    "                                                                                               (   )                                                
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖4,在三棱錐P—ABC中,PA⊥平面ABC、△ABC為正三角形,且PA=AB=2,則三棱錐P—ABC的側(cè)視圖面積為       

查看答案和解析>>

同步練習(xí)冊(cè)答案