已知集合M是滿足下列條件的函數(shù)f(x)的全體;
①當(dāng)x∈[0,+∞)時(shí),函數(shù)值為非負(fù)實(shí)數(shù);
②對于任意的s、t∈x[0,+∞),λ>0,都有
f(x)+λf(t)
1+λ
≤f(
s+λt
1+λ
)

在三個(gè)函數(shù)f1(x)=x-1,f2(x)=2x-1f3(x)=ln
x+1
中,屬于集合M的是
f3(x)
f3(x)
(寫出您認(rèn)為正確的所有函數(shù).)
分析:由于集合M是滿足下列條件的函數(shù)f(x)的全體;①當(dāng)x∈[0,+∞]時(shí),函數(shù)值為非負(fù)實(shí)數(shù);②對于任意的s、t∈x[0,+∞),λ>0,都有
f(s)+λf(t)
1+λ
≤f(
s+λt
1+λ
)
.從①知函數(shù)圖象在x軸上方;從②知函數(shù)圖象是上凸的,如圖所示.再分別考察三個(gè)函數(shù)f1(x)=x-1,f2(x)=2x-1,f3(x)=ln
x+1
的圖象,從而得出答案.
解答:解:由于集合M是滿足下列條件的函數(shù)f(x)的全體;
①當(dāng)x∈[0,+∞]時(shí),函數(shù)值為非負(fù)實(shí)數(shù);
②對于任意的s、t∈x[0,+∞),λ>0,都有
f(s)+λf(t)
1+λ
≤f(
s+λt
1+λ
)

從①知函數(shù)圖象在x軸上方;從②知函數(shù)圖象是上凸的,如圖所示.
分別考察三個(gè)函數(shù)f1(x)=x-1,f2(x)=2x-1,f3(x)=ln
x+1
的圖象,
在三個(gè)函數(shù)f1(x)=x-1,f2(x)=2x-1,f3(x)=ln
x+1
中,屬于集合M的是 f3(x).

故答案為:f3(x).
點(diǎn)評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)的值域等基礎(chǔ)知識,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:在定義域內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函數(shù)f(x)=
1
x
是否屬于集合M?說明理由;
(2)設(shè)函數(shù)f(x)=lg
a
x2+1
∈M
,求a的取值范圍;
(3)設(shè)函數(shù)y=2x圖象與函數(shù)y=-x的圖象有交點(diǎn),證明:函數(shù)f(x)=2x+x2∈M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:存在非零常數(shù)T,對任意x∈R,有f(x+T)=T•f(x)成立.
(1)函數(shù)f(x)=x是否屬于集合M?說明理由;
(2)設(shè)函數(shù)f(x)=ax(a>0,且a≠1)的圖象與y=x的圖象有公共點(diǎn),證明:f(x)=ax∈M;
(3)若函數(shù)f(x)=sinkx∈M,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:存在非零常數(shù)k,對定義域中的任意x,等式f(kx)=
k2
+f(x)恒成立.
(1)判斷一次函數(shù)f(x)=ax+b(a≠0)是否屬于集合M;
(2)證明函數(shù)f(x)=log2x屬于集合M,并找出一個(gè)常數(shù)k;
(3)已知函數(shù)f(x)=logax( a>1)與y=x的圖象有公共點(diǎn),證明f(x)=logax∈M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•嘉定區(qū)三模)已知集合M是滿足下列兩個(gè)條件的函數(shù)f(x)的全體:①f(x)在定義域上是單調(diào)函數(shù);②在f(x)的定義域內(nèi)存在閉區(qū)間[a,b],使f(x)在[a,b]上的值域?yàn)?span id="h9vr35x" class="MathJye">[
a
2
 , 
b
2
].若函數(shù)g(x)=
x-1
+m
,g(x)∈M,則實(shí)數(shù)m的取值范圍是
(0 , 
1
2
]
(0 , 
1
2
]

查看答案和解析>>

同步練習(xí)冊答案