已知函數(shù),,.
(1)求的最大值;
(2)若對,總存在使得成立,求的取值范圍;
(3)證明不等式:.

(1)0;(2);(3)證明過程詳見解析.

解析試題分析:本題主要考查導數(shù)的應用、不等式、數(shù)列等基礎知識,考查思維能力、創(chuàng)新意識,考查分類討論思想、轉化思想.第一問,是導數(shù)的應用,利用導數(shù)判斷函數(shù)的單調區(qū)間求函數(shù)最值;第二問,雖然是恒成立問題,但經(jīng)過分析可以轉化成求,通過討論確定每段區(qū)間上函數(shù)的單調性和最值;第三問,先通過觀察湊出所要證明的表達式的形式,再利用等比數(shù)列的前n項和公式求和,最后通過放縮法得到結論.
試題解析: (1)∵ ()
  ∴當時, 
  ∴的最大值為0
(2),使得成立,等價于
由(1)知,當時,時恒為正,滿足題意.
時,,令解得
上單調遞增,在上單調遞減,
時,,∴ ∴ ∴,
時,,
,為正,在為負,
,
不合題意,
綜上的取值范圍為 .
(3)由(1)知  ()
  ∴   ∴

.
考點:1.利用導數(shù)求最值;2.恒成立問題;3.等比數(shù)列的前n項和公式;4.放縮法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求的單調區(qū)間;
(Ⅲ)若函數(shù)沒有零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中.
(1)若處取得極值,求常數(shù)的值;
(2)設集合,,若元素中有唯一的整數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的極值點;
(2)若直線過點,并且與曲線相切,求直線的方程;
(3)設函數(shù),其中,求函數(shù)上的最小值(其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若曲線在點處的切線平行于軸,求的值;
(2)當時,若直線與曲線上有公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
⑴求證函數(shù)上的單調遞增;
⑵函數(shù)有三個零點,求的值;
⑶對恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,試討論函數(shù)的單調性;
(2)證明:對任意的 ,有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2-mlnx
(1)若函數(shù)f(x)在(,+∞)上是遞增的,求實數(shù)m的取值范圍;
(2)當m=2時,求函數(shù)f(x)在[1,e]上的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若對任意,使得恒成立,求實數(shù)的取值范圍;
(Ⅱ)證明:對,不等式成立.

查看答案和解析>>

同步練習冊答案