給出以下命題:
①?x∈R,sinx+cosx>1;
②?x∈R,x2-x+1<0;
③“x>1”是“|x|>1”的充分不必要條件;
④若
a
b
=0,則|
a
|=|
b
|=0.
其中假命題的個數(shù)是( 。
A、0B、1C、2D、3
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:舉出反例x=0,可判斷①的真假;根據(jù)函數(shù)y=x2-x+1的圖象是開口朝上,且與x軸無交點的拋物線,可判斷②;利用充要條件的定義可判斷③;根據(jù)向量垂直的充要條件,可判斷④.
解答: 解:當(dāng)x=0時,sinx+cosx=1,故①為假命題;
函數(shù)y=x2-x+1的圖象是開口朝上,且與x軸無交點的拋物線,故x2-x+1>0恒成立,故②為假命題;
“x>1”⇒“|x|>1”成立,“x>1”?“|x|>1”不成立,故“x>1”是“|x|>1”成立的充分不必要條件,故③為真命題;
a
b
=0,則若
a
b
,|
a
|=|
b
|=0不一定成立,故④為假命題;
綜上所述,假命題的個數(shù)是3個,
故選:D
點評:本題以命題的真假判斷為載體考查了三角函數(shù)的圖象和性質(zhì),二次函數(shù)的圖象和性質(zhì),充要條件的定義及向量垂直的充要條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-3,1,-4),B(3,-5,10)則線段AB的中點M的坐標(biāo)為( 。
A、(0,-4,6)
B、(0,-2,3)
C、(0,2,3)
D、(0,-2,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程是(x-2)2+(y-3)2=4,則點P(-3,-2)滿足( 。
A、是圓心B、在圓上
C、在圓內(nèi)D、在圓外

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R,a+b+c=0,abc>0,T=
1
a
+
1
b
+
1
c
,則(  )
A、T>0B、T<0
C、T=0D、T≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(
π
3
+α)=
4
5
,則cos(
6
+α)的值為( 。
A、-
3
5
B、
3
5
C、-
4
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若三點A(2,3),B(3,4),C(a,b)共線,則有( 。
A、a=3,b=-5
B、a-b+1=0
C、2a-b=3
D、a-2b=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖A、B、C、D是某油田的四口油井,計劃建三條路,將這四口油井連結(jié)起來(每條路只連結(jié)兩口油井),那么不同的建路方案有( 。
A、12種B、14種
C、16種D、18種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=3,a2=6,an+2=an+1-an,那么a6=( 。
A、-2B、-3C、-6D、-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,g(x)=ax2(a∈R,a≠0).
(1)求函數(shù)y=
g(x)
f(x)
的單調(diào)區(qū)間;
(2)①已知A(x1,y1),B(x2,y2)(x1<x2)為函數(shù)y=g(x)圖象上的兩點,y=g′(x)為y=g(x)的導(dǎo)函數(shù),若g′(x0)=
y1-y2
x1-x2
,求證:x0∈(x1,x2);
②類比函數(shù)y=g(x),①中的結(jié)論在函數(shù)y=f(x)中是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案