函數(shù)y=-
1
x-2
的單調(diào)區(qū)間是
 
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出函數(shù)的導(dǎo)數(shù),由導(dǎo)函數(shù)大于0,從而求出單調(diào)區(qū)間.
解答: 解:∵y′=
1
(x-2)2
>0,
∴y=-
1
x-2
在(-∞,2),(2,+∞)遞增,
故答案為:(-∞,2)和(2,+∞).
點(diǎn)評(píng):本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算定積分:
6
1
(2x-
1
x2
)dx;    
(2)求函數(shù)的導(dǎo)數(shù):f(x)=
sin(2x+
π
6
)
ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(x2-1)(x2+x-6)在區(qū)間(0,2)上的零點(diǎn)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(cos17°,sin17°),
b
=(cos137°,sin137°),則
a
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)θ∈[0,π],若復(fù)數(shù)z=1+sinθ+i(cosθ-sinθ)是實(shí)數(shù),則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cosx,x∈R,將函數(shù)y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
1
2
倍(縱坐不變),再向左平移
π
4
個(gè)單位長(zhǎng)度得到函數(shù)g(x)的圖象,則關(guān)于f(x)•g(x)有下列命題,其中真命題的序號(hào)是
 

①函數(shù)y=f(x)•g(x)是奇函數(shù);
②π是函數(shù)f(x)•g(x)的一個(gè)周期;
③函數(shù)f(x)•g(x)的圖象關(guān)于點(diǎn)(π,0)中心對(duì)稱(chēng);
④函數(shù)f(x)•g(x)的最大值為
4
3
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題“三角形中最多只有一個(gè)內(nèi)角是直角”時(shí)的假設(shè)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(2x+3)=5-f(2x+4)的周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={1,2,3,4,5},A={1,3},B={3,5},則∁U(A∩B)=( 。
A、{1,2,4,5}
B、{1,5}
C、{2,4}
D、{2,5}

查看答案和解析>>

同步練習(xí)冊(cè)答案