【題目】已知函數(shù).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移個(gè)單位,再將所得圖象的橫坐標(biāo)縮短到原來的一半,縱坐標(biāo)不變,得到新的函數(shù)y=g(x),當(dāng)時(shí),求g(x)的值域.
【答案】(1)[](k∈Z).(2)[,2].
【解析】
(1)化簡(jiǎn)可得:,利用復(fù)合函數(shù)的單調(diào)性及三角函數(shù)性質(zhì)計(jì)算即可。
(2)由函數(shù)f(x)的圖象平移、伸縮可得新的函數(shù):g(x),由可得:,利用三角函數(shù)性質(zhì)可得:,問題得解。
解:(1)函數(shù).
,
.
.
令:(k∈Z),
解得:(k∈Z),
所以函數(shù)的單調(diào)遞增區(qū)間為:[](k∈Z).
(2)將函數(shù)f(x)的圖象向右平移個(gè)單位,
再將所得圖象的橫坐標(biāo)縮短到原來的一半,縱坐標(biāo)不變,
得到:g(x)的圖象,
由于:,
所以:,
所以:,
故:.
故函數(shù)g(x)的值域?yàn)椋?/span>[,2].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|2x+1|,a∈R.
(1)當(dāng)a=1時(shí),求不等式f(x)≤1的解集;
(2)設(shè)關(guān)于x的不等式f(x)≤-2x+1的解集為P,且 P,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】德國數(shù)學(xué)家科拉茨1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1. 對(duì)于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:l可以多次出現(xiàn)),則n的所有不同值的個(gè)數(shù)為
A. 4 B. 6 C. 8 D. 32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為普及高中生安全逃生知識(shí)與安全防護(hù)能力,某學(xué)校高一年級(jí)舉辦了高中生安全知識(shí)與安全逃生能力競(jìng)賽.該競(jìng)賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | 9 | x |
[70,80) | y | 0.38 |
[80,90) | 16 | 0.32 |
[90,100) | z | s |
合計(jì) | p | 1 |
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按規(guī)定,預(yù)賽成績(jī)不低于90分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場(chǎng)順序.已知高一二班有甲、乙兩名同學(xué)取得決賽資格.
①求決賽出場(chǎng)的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一二班在決賽中進(jìn)入前三名的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“a<﹣2”是“函數(shù)f(x)=ax+3在區(qū)間[﹣1,2]上存在零點(diǎn)x0”的( )
A.充分非必要條件
B.必要非充分條件
C.充分必要條件
D.既非充分也非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷錯(cuò)誤的是
A. 若隨機(jī)變量服從正態(tài)分布,則;
B. 若組數(shù)據(jù)的散點(diǎn)都在上,則相關(guān)系數(shù);
C. 若隨機(jī)變量服從二項(xiàng)分布: , 則;
D. 是的充分不必要條件;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,﹣1)是拋物線C:x2=2py(p>0)準(zhǔn)線上的一點(diǎn),點(diǎn)F是拋物線C的焦點(diǎn),點(diǎn)P在拋物線C上且滿足|PF|=m|PA|,當(dāng)m取最小值時(shí),點(diǎn)P恰好在以原點(diǎn)為中心,F(xiàn)為焦點(diǎn)的雙曲線上,則此雙曲線的離心率為( )
A.
B.
C. +1
D. +1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)參加了今年重慶市舉辦的數(shù)學(xué)、物理、化學(xué)三門學(xué)科競(jìng)賽的初賽,在成績(jī)公布之前,老師估計(jì)他能進(jìn)復(fù)賽的概率分別為、、,且這名同學(xué)各門學(xué)科能否進(jìn)復(fù)賽相互獨(dú)立.
(1)求這名同學(xué)三門學(xué)科都能進(jìn)復(fù)賽的概率;
(2)設(shè)這名同學(xué)能進(jìn)復(fù)賽的學(xué)科數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com