已知函數(shù)g(x)=
1,x>0
0,x=0
-1,x<0
,則函數(shù)f(x)=g(lnx)-ln2x的零點(diǎn)個(gè)數(shù)為
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:對(duì)lnx的值進(jìn)行分類討論,即lnx>0、lnx=0、lnx<0,分別求出等價(jià)函數(shù),分別求解其零點(diǎn)個(gè)數(shù),然后相加即可.
解答: 解:①如果lnx>0,即x>1時(shí),
那么函數(shù)f(x)=g(lnx)-ln2x轉(zhuǎn)化為函數(shù)f(x)=1-ln2x,令1-ln2x=0,得x=e,
即當(dāng)x>1時(shí).函數(shù)f(x)=g(lnx)-ln2x的零點(diǎn)是e;
②如果lnx=0,即x=1時(shí),
那么函數(shù)f(x)=g(lnx)-ln2x轉(zhuǎn)化為函數(shù)f(x)=0-ln2x,令0-ln2x=0,得x=1,
即當(dāng)x=1時(shí).函數(shù)f(x)=g(lnx)-ln2x的零點(diǎn)是1;
③如果lnx<0,即0<x<1時(shí),
那么函數(shù)f(x)=g(lnx)-ln2x轉(zhuǎn)化為函數(shù)f(x)=-1-ln2x,令-1-ln2x=0,無解,
即當(dāng)0<x<1時(shí).函數(shù)f(x)=g(lnx)-ln2x沒有零點(diǎn);
綜上函數(shù)f(x)=g(lnx)-ln2x的零點(diǎn)個(gè)數(shù)為2.
故答案為:2
點(diǎn)評(píng):本題主要考查了根的存在性及根的個(gè)數(shù)判斷,考查轉(zhuǎn)化思想,分類討論思想,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解分式方程:
1
x+2
+
4x
x2-4
-
2
x-2
=1的解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列求和:
1
1×(1+2)
+
1
2×(2+2)
+
1
3×(3+2)
+…+
1
n(n+2)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知常數(shù)a、b、c都是實(shí)數(shù),f(x)=ax3+bx2+cx-34的導(dǎo)函數(shù)為f′(x),f′(x)≤0的解集為{x|-2≤x≤3},若f(x)的極小值等于-115,則a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運(yùn)算
.
ab
cd
.
=ad-bc,則符合條件
.
1-1
zzi
.
=4+2i的復(fù)數(shù)z為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
OA
OB
的夾角為θ,|
OA
|=2,|
OB
|=1,
OP
=t
OA
OQ
=(1-t)
OB
,|
PQ
|在t0時(shí)取得最小值,當(dāng)0<t0
1
5
時(shí),夾角θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+b(a,b∈R)與x軸相切,若直線y=c與y=c+5分別交f(x)的圖象于A,B,C,D四點(diǎn),且四邊形ABCD的面積為25,則正實(shí)數(shù)c的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用0到9組成沒有重復(fù)數(shù)字的5位數(shù),任取一個(gè)5位數(shù),奇數(shù)位上都是偶數(shù)的有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

120°轉(zhuǎn)化為孤度數(shù)為( 。
A、
1
3
B、
2
3
C、
1
3
π
D、
2
3
π

查看答案和解析>>

同步練習(xí)冊答案