【題目】已知函數(shù) 的定義域?yàn)镽.
(Ⅰ)求實(shí)數(shù)m的范圍;
(Ⅱ)若m的最大值為n,當(dāng)正數(shù)a,b滿足 時(shí),求4a+7b的最小值.
【答案】解:(Ⅰ)∵函數(shù)的定義域?yàn)镽,|x+2|+|x﹣4|≥|(x+2)﹣(x﹣4)|=6,∴m≤6. (Ⅱ)由(Ⅰ)知n=6,由柯西不等式知,4a+7b= = ,當(dāng)且僅當(dāng) 時(shí)取等號(hào),∴4a+7b的最小值為
【解析】(I)利用絕對(duì)值不等式的性質(zhì)即可得出.(II)利用柯西不等式的性質(zhì)即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的定義域及其求法的相關(guān)知識(shí),掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零,以及對(duì)絕對(duì)值不等式的解法的理解,了解含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)是, ,且橢圓經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過左焦點(diǎn)且傾斜角為45°的直線與橢圓交于兩點(diǎn),求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棉花的纖維長(zhǎng)度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取20根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長(zhǎng)度不低于300mm的為“長(zhǎng)纖維”,其余為“短纖維”)
纖維長(zhǎng)度 | (0,100) | [100,200) | [200,300) | [300,400) | [400,500] |
甲地(根數(shù)) | 3 | 4 | 4 | 5 | 4 |
乙地(根數(shù)) | 1 | 1 | 2 | 10 | 6 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過0.025的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.
甲地 | 乙地 | 總計(jì) | |
長(zhǎng)纖維 | |||
短纖維 | |||
總計(jì) |
附:(1) ;(2)臨界值表;
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)現(xiàn)從上述40根纖維中,按纖維長(zhǎng)度是否為“長(zhǎng)纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測(cè),在這8根纖維中,記乙地“短纖維”的根數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0(m∈R).
(1)判斷直線l與圓C的位置關(guān)系;
(2)設(shè)直線l與圓C交于A,B兩點(diǎn),若直線l的傾斜角為120°,求弦AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過動(dòng)點(diǎn)P作圓:(x﹣3)2+(y﹣4)2=1的切線PQ,其中Q為切點(diǎn),若|PQ|=|PO|(O為坐標(biāo)原點(diǎn)),則|PQ|的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是公比為正數(shù)的等比數(shù)列, .
(1)求的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,側(cè)面PAD是邊長(zhǎng)為2的正三角形,AB=BD= ,PB=
(Ⅰ)求證:平面PAD⊥平面ABCD;
(Ⅱ)設(shè)Q是棱PC上的點(diǎn),當(dāng)PA∥平面BDQ時(shí),求二面角A﹣BD﹣Q的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,受煙花爆竹集中燃放影響,我國(guó)多數(shù)城市空氣中PM2.5濃度快速上升,特別是在大氣擴(kuò)散條件不利的情況下,空氣質(zhì)量在短時(shí)間內(nèi)會(huì)迅速惡化.2017年除夕18時(shí)和初一2時(shí),國(guó)家環(huán)保部門對(duì)8個(gè)城市空氣中PM2.5濃度監(jiān)測(cè)的數(shù)據(jù)如表(單位:微克/立方米).
除夕18時(shí)PM2.5濃度 | 初一2時(shí)PM2.5濃度 | |
北京 | 75 | 647 |
天津 | 66 | 400 |
石家莊 | 89 | 375 |
廊坊 | 102 | 399 |
太原 | 46 | 115 |
上海 | 16 | 17 |
南京 | 35 | 44 |
杭州 | 131 | 39 |
(Ⅰ)求這8個(gè)城市除夕18時(shí)空氣中PM2.5濃度的平均值;
(Ⅱ)環(huán)保部門發(fā)現(xiàn):除夕18時(shí)到初一2時(shí)空氣中PM2.5濃度上升不超過100的城市都是“禁止燃放煙花爆竹“的城市,濃度上升超過100的城市都未禁止燃放煙花爆竹.從以上8個(gè)城市中隨機(jī)選取3個(gè)城市組織專家進(jìn)行調(diào)研,記選到“禁止燃放煙花爆竹”的城市個(gè)數(shù)為X,求隨機(jī)變量y的分布列和數(shù)學(xué)期望;
(Ⅲ)記2017年除夕18時(shí)和初一2時(shí)以上8個(gè)城市空氣中PM2.5濃度的方差分別為s12和s22 , 比較s12和s22的大小關(guān)系(只需寫出結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)名著《算學(xué)啟蒙》中有如下問題:“松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.”如圖是源于其思想的一個(gè)程序框圖,若輸入的a,b的值分別為16,4,則輸出的n的值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com