【題目】如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A.2019年12月份,全國居民消費價格環(huán)比持平
B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲
C.2018年12月至2019年12月全國居民消費價格同比均上漲
D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,,,沿矩形對角線BD將折起形成四面體ABCD,在這個過程中,現(xiàn)在下面四個結(jié)論:①在四面體ABCD中,當(dāng)時,;②四面體ABCD的體積的最大值為;③在四面體ABCD中,BC與平面ABD所成角可能為;④四面體ABCD的外接球的體積為定值.其中所有正確結(jié)論的編號為( )
A.①④B.①②C.①②④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)抽取一個年份,對西安市該年4月份的天氣情況進(jìn)行統(tǒng)計,結(jié)果如下:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 晴 | 雨 | 陰 | 陰 | 陰 | 雨 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 晴 | 陰 | 雨 | 陰 | 陰 | 晴 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 雨 |
(1)在4月份任取一天,估計西安市在該天不下雨的概率;
(2)西安市某學(xué)校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對旗下的甲、乙兩個門店在1至9月份的營業(yè)額(單位:萬元)進(jìn)行統(tǒng)計并得到如圖折線圖.
下面關(guān)于兩個門店營業(yè)額的分析中,錯誤的是( )
A.甲門店的營業(yè)額折線圖具有較好的對稱性,故而營業(yè)額的平均值約為32萬元
B.根據(jù)甲門店的營業(yè)額折線圖可知,該門店營業(yè)額的平均值在[20,25]內(nèi)
C.根據(jù)乙門店的營業(yè)額折線圖可知,其營業(yè)額總體是上升趨勢
D.乙門店在這9個月份中的營業(yè)額的極差為25萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,網(wǎng)絡(luò)電商已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的消費方式為了更好地服務(wù)民眾,某電商在其官方APP中設(shè)置了用戶評價反饋系統(tǒng),以了解用戶對商品狀況和優(yōu)惠活動的評價現(xiàn)從評價系統(tǒng)中隨機(jī)抽出200條較為詳細(xì)的評價信息進(jìn)行統(tǒng)計,商品狀況和優(yōu)惠活動評價的2×2列聯(lián)表如下:
對優(yōu)惠活動好評 | 對優(yōu)惠活動不滿意 | 合計 | |
對商品狀況好評 | 100 | 20 | 120 |
對商品狀況不滿意 | 50 | 30 | 80 |
合計 | 150 | 50 | 200 |
(I)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為優(yōu)惠活動好評與商品狀況好評之間有關(guān)系?
(Ⅱ)為了回饋用戶,公司通過APP向用戶隨機(jī)派送每張面額為0元,1元,2元的三種優(yōu)惠券用戶每次使用APP購物后,都可獲得一張優(yōu)惠券,且購物一次獲得1元優(yōu)惠券,2元優(yōu)惠券的概率分別是,,各次獲取優(yōu)惠券的結(jié)果相互獨立若某用戶一天使用了APP購物兩次,記該用戶當(dāng)天獲得的優(yōu)惠券面額之和為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù)
P(K2≥k) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2,其中n=a+b+c+d
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點P為的中點,交于點D,現(xiàn)將沿翻折至,使得平面平面.
(1)若Q為線段的中點,求證:平面;
(2)在線段上是否存在點E,使得二面角大小為.若存在,請求出點E所在位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)寫出曲線C1和C2的直角坐標(biāo)方程;
(2)已知P為曲線C2上的動點,過點P作曲線C1的切線,切點為A,求|PA|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一飲料店制作了一款新飲料,為了進(jìn)行合理定價先進(jìn)行試銷售,其單價(元)與銷量(杯)的相關(guān)數(shù)據(jù)如下表:
單價(元) | 8.5 | 9 | 9.5 | 10 | 10.5 |
銷量(杯) | 120 | 110 | 90 | 70 | 60 |
(1)已知銷量與單價具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)若該款新飲料每杯的成本為8元,試銷售結(jié)束后,請利用(1)所求的線性回歸方程確定單價定為多少元時,銷售的利潤最大?(結(jié)果四舍五入保留到整數(shù))
附:線性回歸方程中斜率和截距最小二乗法估計計算公式:,,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com