【題目】廟會(huì)是我國古老的傳統(tǒng)民俗文化活動(dòng),又稱“廟市”或 “節(jié)場(chǎng)”.廟會(huì)大多在春節(jié)、元宵節(jié)等節(jié)日舉行.廟會(huì)上有豐富多彩的文化娛樂活動(dòng),如“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎(jiǎng)品,則“中獎(jiǎng)”).今年春節(jié)期間,某校甲、乙、丙、丁四位同學(xué)相約來到某廟會(huì),每人均獲得砸一顆金蛋的機(jī)會(huì).游戲開始前,甲、乙、丙、丁四位同學(xué)對(duì)游戲中獎(jiǎng)結(jié)果進(jìn)行了預(yù)測(cè),預(yù)測(cè)結(jié)果如下:

甲說:“我或乙能中獎(jiǎng)”; 乙說:“丁能中獎(jiǎng)”;

丙說:“我或乙能中獎(jiǎng)”; 丁說:“甲不能中獎(jiǎng)”.

游戲結(jié)束后,這四位同學(xué)中只有一位同學(xué)中獎(jiǎng),且只有一位同學(xué)的預(yù)測(cè)結(jié)果是正確的,則中獎(jiǎng)的同學(xué)是( )

A. B. C. D.

【答案】A

【解析】由四人的預(yù)測(cè)可得下表:

中獎(jiǎng)人

預(yù)測(cè)結(jié)果

1.若甲中獎(jiǎng),僅有甲預(yù)測(cè)正確,符合題意;2.若乙中獎(jiǎng),甲、丙、丁預(yù)測(cè)正確,不符合題意;3.若丙中獎(jiǎng),丙、丁預(yù)測(cè)正確,不符合題意;4.若丁中獎(jiǎng),乙、丁預(yù)測(cè)正確,不符合題意;故只有當(dāng)甲中獎(jiǎng)時(shí),僅有甲一人預(yù)測(cè)正確,選.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動(dòng)物園要為剛?cè)雸@的小動(dòng)物建造一間兩面靠墻的三角形露天活動(dòng)室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.

(1)若,求的周長(結(jié)果精確到0.01米);

(2)為了使小動(dòng)物能健康成長,要求所建的三角形露天活動(dòng)室面積,的面積盡可能大,當(dāng)為何值時(shí),該活動(dòng)室面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,橢圓與直線相切于點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于、兩點(diǎn)(, 不是長軸端點(diǎn)),且以為直徑的圓過橢圓軸正半軸上的頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,, _______,求的周長的取值范圍.

,,且;

,.

注:這三個(gè)條件中選一個(gè),補(bǔ)充在上面的問題中并對(duì)其進(jìn)行求解,如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角成等差數(shù)列,且所對(duì)的邊分別為,則有下列四個(gè)命題:

;

②若成等比數(shù)列,則為等邊三角形;

③若,則為銳角三角形;

④若,則.

則以上命題中正確的有________________.( 把所有正確的命題序號(hào)都填在橫線上 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表中的數(shù)表為森德拉姆篩”(森德拉姆,東印度學(xué)者),其特點(diǎn)是每行每列都成等差數(shù)列.

2

3

4

5

6

7

3

5

7

9

11

13

4

7

10

13

16

19

5

9

13

17

21

25

6

11

16

21

26

31

7

13

19

25

31

37

在上表中,2017出現(xiàn)的次數(shù)為(

A. 18 B. 36 C. 48 D. 72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費(fèi)者,工藝品的平面設(shè)計(jì)如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點(diǎn)為半圈上一點(diǎn)(異于,),點(diǎn)在線段上,且滿足.已知,設(shè).

1)為了使工藝禮品達(dá)到最佳觀賞效果,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),工藝禮品達(dá)到最佳觀賞效果;

2)為了工藝禮品達(dá)到最佳穩(wěn)定性便于收藏,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),取得最大值,并求該最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C,O為坐標(biāo)原點(diǎn),FC的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式的解集為.

1)求;(2)解關(guān)于的不等式

查看答案和解析>>

同步練習(xí)冊(cè)答案