(本小題滿分分)
若函數(shù)在定義域內(nèi)某區(qū)間上是增函數(shù),而上是減函數(shù),
則稱上是“弱增函數(shù)”
(1)請分別判斷=,是否是“弱增函數(shù)”,
并簡要說明理由;
(2)證明函數(shù)(是常數(shù)且)在上是“弱增函數(shù)”.

(1)=上是“弱增函數(shù)”; 上不是“弱增函數(shù)”(2)易證上是增函數(shù),再利用定義證明上是減函數(shù)

解析試題分析:(1)=上是“弱增函數(shù)”;
上不是“弱增函數(shù)”;                           ……2分
理由如下:
顯然,=上是增函數(shù),上是減函數(shù),
=上是“弱增函數(shù)”。                             ……4分
是開口向上的拋物線,對稱軸方程為
上是增函數(shù),
上是增函數(shù),
上不是“弱增函數(shù)”。                        ……6分
(2)證明:∵函數(shù)是開口向上的拋物線,對稱軸方程為,
∴函數(shù)(是常數(shù)且)在上是增函數(shù);        ……8分
,則,
對任意,得,,                      ……9分

,                       ……12分
,從而上是減函數(shù),                ……13分
∴函數(shù)(是常數(shù)且)在上是“弱增函數(shù)”.  ……14分
考點:本小題主要考查新定義下函數(shù)的單調(diào)性的研究和證明,考查學生的推理能力和論證能力.
點評:判斷函數(shù)的單調(diào)性一是可以借助初等函數(shù)的單調(diào)性,再就是利用函數(shù)的單調(diào)性的定義來證明,利用定義證明函數(shù)的單調(diào)性時,要化到最簡.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
,且,
(1)求的最小值及相應 x的值;
(2)若,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題13分)
已知函數(shù)
(1)若對一切實數(shù)恒成立,求實數(shù)的取值范圍.
(2)求在區(qū)間上的最小值的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是定義在上的偶函數(shù),當時, 。
(1)用分段函數(shù)形式寫出上的解析式;   
(2)畫出函數(shù)的大致圖象;并根據(jù)圖像寫出的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)計算(1);
(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(11分) 已知函數(shù)在定義域上為增函數(shù),且滿足
(1)求的值           (2)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
我市有甲、乙兩家乒乓球俱樂部,兩家設備和服務都很好,但收費方式不同.甲家每張球臺每小時5元;乙家按月計費,一個月中30小時以內(nèi)(含30小時)每張球臺90元,超過30小時的部分每張球臺每小時2元.小張準備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于15小時,也不超過40小時.
(1)設在甲家租一張球臺開展活動小時的收費為,在乙家租一張球臺開展活動小時的收費為,試求。
(2)問:小張選擇哪家比較合算?說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分).某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為千元,設該容器的建造費用為千元.

(Ⅰ)寫出關于的函數(shù)表達式,并求該函數(shù)的定義域;
(Ⅱ)求該容器的建造費用最小時的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共12分)已知f(x)=m(x-2m)(x+m+3),g(x)=-2,若同時滿足條件:
x∈R,f(x) <0或g(x) <0;②x∈(﹣∝, ﹣4),f(x)g(x) <0。求m的取值范圍。

查看答案和解析>>

同步練習冊答案