凸函數(shù)的性質(zhì)定理為:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對于區(qū)間D內(nèi)的任意x1,x2,…,xn,有≤f(),已知函數(shù)y=sinx在區(qū)間(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值為________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
用數(shù)學(xué)歸納法證明不等式“”的過程中,由n=k到n=k+1時,不等式的左邊( )
A.增加了一項(xiàng) |
B.增加了兩項(xiàng) |
C.增加了一項(xiàng),又減少了一項(xiàng) |
D.增加了兩項(xiàng),又減少了一項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
用分別表示中的最大與最小者,有下列結(jié)論:
①;
②;
③若,則;
④若,則。
其中正確結(jié)論的個數(shù)是( )
A.0 | B.1 | C.2 | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
黑白兩種顏色的正六形地面磚塊按如圖的規(guī)律拼成若干個圖案,則第4個圖案中有白色地面磚________________塊.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
觀察分析下表中的數(shù)據(jù):
多面體 | 面數(shù)() | 頂點(diǎn)數(shù)() | 棱數(shù)() |
三棱錐 | 5 | 6 | 9 |
五棱錐 | 6 | 6 | 10 |
立方體 | 6 | 8 | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
1955年,印度數(shù)學(xué)家卡普耶卡(D.R.Kaprekar)研究了對四位自然數(shù)的一種交換:任給出四位數(shù),用的四個數(shù)字由大到小重新排列成一個四位數(shù)m,再減去它的反序數(shù)n(即將的四個數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運(yùn)算,比如0001,計算時按1計算),得出數(shù),然后繼續(xù)對重復(fù)上述變換,得數(shù),…,如此進(jìn)行下去,卡普耶卡發(fā)現(xiàn),無論是多大的四位數(shù),只要四個數(shù)字不全相同,最多進(jìn)行k次上述變換,就會出現(xiàn)變換前后相同的四位數(shù)t(這個數(shù)稱為Kaprekar變換的核).通過研究10進(jìn)制四位數(shù)2014可得Kaprekar變換的核為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知的周長為,面積為,則的內(nèi)切圓半徑為 .將此結(jié)論類比到空間,已知四面體的表面積為,體積為,則四面體的內(nèi)切球的半徑 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
在中,不等式成立;在凸四邊形ABCD中,
不等式成立;在凸五邊形ABCDE中,不等式成立,…,依此類推,在凸n邊形中,不等式_____成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com