若直線y=x+b與曲線x=
1-y2
恰有一個(gè)公共點(diǎn),則b的取值范圍是
 
考點(diǎn):直線與圓相交的性質(zhì)
專題:計(jì)算題,直線與圓
分析:直線y=x+b是一條斜率為1,截距為b的直線;曲線x=
1-y2
是一個(gè)圓心為(0,0),半徑為1的右半圓.它們有且有一個(gè)公共點(diǎn),做出它們的圖形,則易得b的取值范圍.
解答: 解:直線y=x+b是一條斜率為1,截距為b的直線;
曲線x=
1-y2
變形為x2+y2=1且x≥0
顯然是一個(gè)圓心為(0,0),半徑為1的右半圓.
根據(jù)題意,直線y=x+b與曲線x=
1-y2
有且有一個(gè)公共點(diǎn)
做出它們的圖形,則易得b的取值范圍是:-1<b≤1或b=-
2

故答案為:-1<b≤1或b=-
2
點(diǎn)評(píng):(1)要注意曲線x=
1-y2
是一個(gè)圓心為(0,0),半徑為1的右半圓.始終要注意曲線方程的純粹性和完備性.
(2)它們有且有一個(gè)公共點(diǎn),做出它們的圖形,還要注意直線和曲線相切的特殊情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)函數(shù)f(x)=
3
sin(2x+
π
6
)下列有三個(gè)命題( 。
①f(x)圖象關(guān)于(
π
6
,0)對(duì)稱
②f(x)在(0,
π
6
)單調(diào)遞增
③若f(x+φ)為偶函數(shù)(φ>0),則φ的最小值為
π
6
A、②③B、①②C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}及等比數(shù)列{bn},其中b1=1,公比q<0,且數(shù)列{an+bn}的前三項(xiàng)分別為2、1、4.
(Ⅰ)求an及q;
(Ⅱ)求數(shù)列{an+bn}的前n項(xiàng)和Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)右焦點(diǎn)為F,其右準(zhǔn)線與x軸的交點(diǎn)為A,在橢圓上存在點(diǎn)P滿足線段AP的垂直平分線過點(diǎn)F,則橢圓的離心率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PB⊥底面ABCD,AB∥CD,AD⊥AB,AB=2,AD=
2
,PB=3,E為CD上一點(diǎn),EC=3,DE=1.
(1)證明:BE⊥平面PBC;
(2)求三棱錐B-PAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式的值.
(1)log2
7
48
+log212-
1
2
log242;
(2)lg52+
2
3
lg8+lg5•lg20+lg22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex-ax-a.
(Ⅰ)若f(x)≥0對(duì)一切x≥-1恒成立,求a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+
a
ex
,且A(x1,y1),B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點(diǎn),若對(duì)任意的a≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(Ⅲ)求證:1n+3n+…+(2n-1)n
e
e-1
(2n)n(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,0),B(0,2),C(cosθ,sinθ),O為坐標(biāo)原點(diǎn).
(1)
AC
BC
=-
1
3
,求sin2θ的值;
(2)若|
OA
+
OC
|=
7
,且θ∈(-π,0),求
OB
OC
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱BB1⊥底面ABC,∠BAC=90°,AB=AC=AA1=2,且E是BC中點(diǎn).
(I)求錐體A1-B1C1EB的體積;
(Ⅱ)求證:B1C⊥AC1

查看答案和解析>>

同步練習(xí)冊(cè)答案