短軸長為,離心率的橢圓兩焦點為, 過作直線交橢圓于 兩
點,則的周長為(   )
A.B.C.D.
B

試題分析:由短軸長為;離心率,解得的周長為.
點評:由橢圓的離心率及短軸長可求出a的值,然后利用橢圓的定義可知的周長為4a,從而求出的周長.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線上的點到一個焦點的距離為11,則它到另一個焦點的距離為(  )
A.B.C.2D.21

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若方程 表示雙曲線,則實數(shù) 的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若點和點分別為雙曲線)的中心和左焦點,點為雙曲線右支上的任意一點,則的取值范圍為(   )
A.[3- B.[3+ ,
C.[D.[,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

點A、B分別是以雙曲線的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方, 
(1)求橢圓C的的方程;
(2)求點P的坐標;
(3)設M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到M的距離d的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的焦點弦坐標分別為,則的值一定等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

焦點在x軸上的橢圓的離心率為,則它的長半軸長為_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點B恰好是拋物線的焦點,且離心率等于,直線與橢圓C交于M,N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C的右焦點F是否可以為的垂心?若可以,求出直線的方程;若不行,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知橢圓的離心率,過右焦點的直線與橢圓相交于兩點,當直線的斜率為1時,坐標原點到直線的距離為.
(1)求橢圓的方程
(2)橢圓上是否存在點,使得當直線繞點轉到某一位置時,有成立?若存在,求出所有滿足條件的點的坐標及對應直線方程;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案