【題目】四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC,F為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
【答案】(1)見解析(2)N點(diǎn)為線段CE上靠近C點(diǎn)的一個(gè)三等分點(diǎn).
【解析】試題分析:(1)由和平面,證明,再由平面得,根據(jù)線面垂直的判定定理證出平面,即證出;(2)在中過點(diǎn)作交于點(diǎn),在中過點(diǎn)作交于點(diǎn),連,證明平面平面,可得平面,從而可得結(jié)論.
試題解析:
證明:(1)∵BF⊥平面ACE,AE平面ACE,
∴BF⊥AE,BF⊥CE,
∵EB=BC,∴F是CE的中點(diǎn),
又∵AD⊥平面ABE,AD平面ABCD,
∴平面ABCD⊥平面ABE,
∵平面ABCD∩平面ABE=AB,BC⊥AB
∴BC⊥平面ABE,
從而BC⊥AE,且BC∩BF=B,
∴AE⊥平面BCE,BE平面BCE,
∴AE⊥BE;
(2)在△ABE中過M點(diǎn)作MG∥AE交BE于G點(diǎn),
在△BEC中過G點(diǎn)作GN∥BC交EC于N點(diǎn),連MN,
∴CN=CE.
∵MG∥AE,MG平面ADE,AE平面ADE,
∴MG∥平面ADE.
同理,GN∥平面ADE,且MG與GN交于G點(diǎn),
∴平面MGN∥平面ADE.
又MN平面MGN,
∴MN∥平面ADE.
故N點(diǎn)為線段CE上靠近C點(diǎn)的一個(gè)三等分點(diǎn).
【方法點(diǎn)晴】本題主要考查線面平行的判定定理、直線和平面垂直的判定定理,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中,平面平面,四邊形為邊長為2的菱形, 為直角梯形,四邊形為平行四邊形,且, , .
(1)若, 分別為, 的中點(diǎn),求證: 平面;
(2)若, 與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形中, 的中點(diǎn),將沿折起,使得平面平面.
(1)求證: ;
(2)設(shè),當(dāng)為何值時(shí),二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)滿足.
(1)求函數(shù)的解析式;
(2)若函數(shù),是否存在實(shí)數(shù)使得的最小值為0?若存在,求出的值;若不存在,說明理由;
(3)若函數(shù),是否存在實(shí)數(shù),使函數(shù)在上的值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】借助計(jì)算器填寫下表:
0 | ||||
1 | ||||
10 | ||||
20 | ||||
30 | ||||
50 | ||||
70 | ||||
100 | ||||
150 | ||||
200 | ||||
250 | ||||
300 |
觀察表中的變化并歸納各函數(shù)遞增的規(guī)律:
(1)一次函數(shù)與冪函數(shù)之間比較得出的規(guī)律;
(2)冪函數(shù)與指數(shù)函數(shù)之間比較得出的規(guī)律;
(3)指數(shù)函數(shù)與之間比較得出的規(guī)律.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地居民用水采用階梯水價(jià),其標(biāo)準(zhǔn)為:每戶每月用水量不超過15噸的部分,每噸3元;超過15噸但不超過25噸的部分,每噸4.5元;超過25噸的部分,每噸6元.
(1)求某戶居民每月需交水費(fèi)(元)關(guān)于用水量(噸)的函數(shù)關(guān)系式;
(2)若戶居民某月交水費(fèi)67.5元,求戶居民該月的用水量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的,,三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測:
車間 | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自,,各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測,求這2件產(chǎn)品來自相同車間的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com