【題目】已知圓C的方程為(x﹣1)2+(y﹣2)2=4. (Ⅰ)求過點M(3,1)的圓C的切線方程;
(Ⅱ)判斷直線ax﹣y+3=0與圓C的位置關(guān)系.
【答案】解:(Ⅰ)由圓的方程得到圓心(1,2),半徑r=2, 當(dāng)直線斜率不存在時,方程x=3與圓相切;
當(dāng)直線斜率存在時,設(shè)方程為y﹣1=k(x﹣3),即kx﹣y+1﹣3k=0,
由題意得: =2,
解得:k= ,
∴方程為y﹣1= (x﹣3),即3x﹣4y﹣5=0,
則過點M的切線方程為x=3或3x﹣4y﹣5=0;
(Ⅱ)直線ax﹣y+3=0恒過點(0,3),
∵(0﹣1)2+(3﹣2)2=2<4,
∴(0,3)在圓內(nèi),
∴直線ax﹣y+3=0與圓C相交
【解析】(Ⅰ)由圓的方程找出圓心坐標(biāo)與半徑,分兩種情況考慮:若切線方程斜率不存在,直線x=3滿足題意;若斜率存在,設(shè)出切線方程,根據(jù)直線與圓相切時圓心到切線的距離d=r,求出k的值,綜上即可確定出滿足題意的切線方程;(Ⅱ)直線ax﹣y+3=0恒過點(0,3),(0,3)在圓內(nèi),即可得出結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列向量組中能作為表示它們所在平面內(nèi)所有向量的基底的是( )
A. =(0,0), =(1,﹣2)
B. =(﹣1,2), =(2,﹣4)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(6,9)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人投籃的水平都比較穩(wěn)定,若三人各自獨立地進行一次投籃測試,則甲投中而乙不投中的概率為 ,乙投中而丙不投中的概率為 ,甲、丙兩人都投中的概率為 .
(1)分別求甲、乙、丙三人各自投籃一次投中的概率;
(2)若丙連續(xù)投籃5次,求恰有2次投中的概率;
(3)若丙連續(xù)投籃3次,每次投籃,投中得2分,未投中得0分,在3次投籃中,若有2次連續(xù)投中,而另外1次未投中,則額外加1分;若3次全投中,則額外加3分,記ξ為丙連續(xù)投籃3次后的總得分,求ξ的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,E是PC的中點,求證: (Ⅰ)PA∥平面EDB
(Ⅱ)AD⊥PC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形CEPD如圖(1)所示,其中PD=8,CE=6,A為線段PD的中點,四邊形ABCD為正方形,現(xiàn)沿AB進行折疊,使得平面PABE⊥平面ABCD,得到如圖(2)所示的幾何體.已知當(dāng)點F滿足 = (0<λ<1)時,平面DEF⊥平面PCE,則λ的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三年級從甲、乙兩個班級各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績的中位數(shù)是83.
(1)求x和y的值;
(2)計算甲班7位學(xué)生成績的方差s2;
(3)從成績在90分以上的學(xué)生中隨機抽取兩名學(xué)生,求甲班至少有一名學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+a.
(1)當(dāng)a=2時,求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x﹣1|,當(dāng)x∈R時,f(x)+g(x)≥3,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓與雙曲線有相同的焦點F1(﹣c,0),F(xiàn)2(c,0),橢圓的一個短軸端點為B,直線F1B與雙曲線的一條漸近線平行,若橢圓與雙曲線的離心率分別為e1 , e2 , 則3e12+e22的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sinx的圖象向右平移三個單位長度得到圖象C,再將圖象C上的所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍(縱坐標(biāo)不變)得到圖象C1 , 則C1的函數(shù)解析式為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com