【題目】已知 為等差數(shù)列,公差 ),且
(1)求證:當(dāng) 取不同自然數(shù)時(shí),此方程有公共根;
(2)若方程不同的根依次為 , , …, , …,求證:數(shù)列 為等差數(shù)列。

【答案】
(1)因?yàn)?是等差數(shù)列, ,

故方程 可變?yōu)?,

當(dāng) 取不同自然數(shù)時(shí),方程有一個(gè)公共根 。


(2)方程的非公共根為 ,

是等差數(shù)列。


【解析】分析:(1)根據(jù)等差數(shù)列的性質(zhì)可得 ,故方程可變?yōu)? 即可;(2)本題是考查等差關(guān)系的確定,考查了學(xué)生的推理運(yùn)算能力,屬于難題。
【考點(diǎn)精析】通過(guò)靈活運(yùn)用等差數(shù)列的性質(zhì),掌握在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人上午7時(shí)乘船出發(fā),以勻速海里/小時(shí)港前往相距50海里的港,然后乘汽車以勻速千米/小時(shí)()自港前往相距千米的市,計(jì)劃當(dāng)天下午4到9時(shí)到達(dá)市.設(shè)乘船和汽車的所要的時(shí)間分別為、小時(shí),如果所需要的經(jīng)費(fèi) (單位:元)

(1)試用含有、的代數(shù)式表示

(2)要使得所需經(jīng)費(fèi)最少,求的值,并求出此時(shí)的費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 若a7>0,a8<0,則下列結(jié)論正確的是( )
A.S7S8
B.S15S16
C.S13>0
D.S15>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知Sn表示數(shù)列{an}的前n項(xiàng)和,若對(duì)任意的n∈N*滿足an1ana2 , 且a3=2,則S2016=( )
A.1006×2013
B.1006×2014
C.1008×2015
D.1007×2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖所示將若干個(gè)點(diǎn)擺成三角形圖案,每條邊(包括兩個(gè)端點(diǎn))有n(n>l,n∈N*)個(gè)點(diǎn),相應(yīng)的圖案中總的點(diǎn)數(shù)記為 ,則 =( ).
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)F(x)=|lgx|,若0<a<b,且f(a)=f(b),則a+2b的取值范圍是(
A.
B.
C.(3,+∞)
D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時(shí),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若y=|3sin(ωx+ )+2|的圖象向右平移 個(gè)單位后與自身重合,且y=tanωx的一個(gè)對(duì)稱中心為( ,0),則ω的最小正值為

查看答案和解析>>

同步練習(xí)冊(cè)答案