已知四棱錐P-ABCD的直觀(guān)圖(如圖(1))及左視圖(如圖(2)),底面ABCD是邊長(zhǎng)為2的正方形,平面PAB⊥平面ABCD,PA=PB。

(1)求證:AD⊥PB;
(2)求異面直線(xiàn)PD與AB所成角的余弦值;
(3)求平面PAB與平面PCD所成銳二面角的大小.
⑴利用面面垂直的性質(zhì)得到線(xiàn)面垂直,然后再由線(xiàn)面垂直證得線(xiàn)線(xiàn)垂直;⑵;⑶。

試題分析:⑴取AB的中點(diǎn)O,連接PO,因?yàn)镻A=PB,則PO⊥AB,
又∵ 平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PO平面PAB,
∴PO⊥平面ABCD,∴PO⊥AD,    2分
而AD⊥AB,PO∩AB=O,∴AD⊥平面PAB,∴AD⊥PB。    4分
⑵過(guò)O作AD的平行線(xiàn)為x軸,以O(shè)B、OP所在直線(xiàn)分別為y、z軸,建立如圖的空間直角坐標(biāo)系,則A(0,-1,0),D(2,-1,0),B(0,1,0),C(2,1,0),

=(2,-1,-2),=(0,2,0),cos<,>==-,
即異面直線(xiàn)PD與AB所成角的余弦值為。    8分
⑶易得平面PAB的一個(gè)法向量為n=(1,0 ,0)。
設(shè)平面PCD的一個(gè)法向量為m=(x,y,z),由⑵知=(2,-1,-2),=(0,-2,0),則,即,解得x=z,
令x=1,則m=(1,0,1),   .10分
則cos<n,m>==,
即平面PAB與平面PCD所成銳二面角的大小為。    .12分
點(diǎn)評(píng):空間各種角問(wèn)題最終都可以轉(zhuǎn)化為線(xiàn)線(xiàn)角求解,可用空間向量的數(shù)量積及其夾角余弦公式求解。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在長(zhǎng)方體中,與平面所成角的正弦值為 (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,平面⊥平面,,四邊形是直角梯形,,, ,分別為的中點(diǎn).

(Ⅰ) 用幾何法證明:平面;
(Ⅱ)用幾何法證明:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,若是長(zhǎng)方體被平面截去幾何體后得到的幾何體,其中E為線(xiàn)段上異于的點(diǎn),F(xiàn)為線(xiàn)段上異于的點(diǎn),且,則下列結(jié)論中不正確的是(  )
A.B.四邊形是矩形
C.是棱臺(tái)D.是棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知、是三條不同的直線(xiàn),、、是三個(gè)不同的平面,給出以下命題:
①若,則; ②若,則;③若,,則;④若,,則
其中正確命題的序號(hào)是(   )   
A.②④B.②③C.③④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在空間四邊形ABCD中,在AB、BC、DC、DA上分別取E、F、G、H四點(diǎn),如果GH、EF交于一點(diǎn)P,則                                    (   )
A.P一定在直線(xiàn)BD上         
B.P一定在直線(xiàn)AC上
C.P在直線(xiàn)AC或BD上      
D.P既不在直線(xiàn)BD上,也不在AC上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱(側(cè)棱垂直底面)中,M、N分別是BC、AC1中點(diǎn),AA1=2,AB=,AC=AM=1.

(1)證明:MN∥平面A1ABB1;
(2)求幾何體C—MNA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正方體中,分別是棱的中點(diǎn),則異面直線(xiàn)所成的角等于__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是空間中互不相同的直線(xiàn),是不重合的兩平面,則下列命題中為真命題的是(    )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案