精英家教網 > 高中數學 > 題目詳情

【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調查研究后發(fā)現,每天空氣污染的指數隨時刻()變化的規(guī)律滿足表達式,,其中為空氣治理調節(jié)參數,且

1)令,求的取值范圍;

2)若規(guī)定每天中的最大值作為當天的空氣污染指數,要使該市每天的空氣污染指數不超過5,試求調節(jié)參數的取值范圍.

【答案】(1)(2)

【解析】

(1)由題意可得,直接根據定義域,求解的范圍即可.
(2)的最大值作為當天的空氣污染指數,所以直接根據的范圍簡化表達式,故有,再根據絕對值分段討論的方法分析函數單調性計算污染指數不超過5時參數的取值范圍.

1)因為,所以

2)因為

所以上單調遞減,在單調遞增.

所以

所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為統(tǒng)計數據:

月份

1

2

3

4

5

違章駕駛員人數

120

105

100

90

85

(1)請利用所給數據求違章人數y與月份之間的回歸直線方程+

(2)預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數;

(3)交警從這5個月內通過該路口的駕駛員中隨機抽查了50人,調查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下2列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計

駕齡不超過1年

22

8

30

駕齡1年以上

8

12

20

合計

30

20

50

能否據此判斷有97.5的把握認為“禮讓斑馬線”行為與駕齡有關?

參考公式及數據:,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數同時滿足:(1)對于定義域內的任意,有;(2)對于定義域內的任意,當時,有,則稱函數理想函數.給出下列四個函數:①;②;③;④.

其中是理想函數的序號是( )

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某影院共有1000個座位,票價不分等次,根據該影院的經營經驗,當每張票價不超過10元時,票可全部售出,當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院一個合適的票價,符合的基本條件是:

為了方便找零和算賬,票價定為1元的整數倍;

影院放映一場電影的成本費為5750元,票房收入必須高于成本支出.

1)設定價為)元,凈收入為元,求關于的表達式;

2)每張票價定為多少元時,放映一場的凈收入最多?此時放映一場的凈收入為多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為奇函數.

1)求a的值,并證明R上的增函數;

2)若關于t的不等式f(t22t)f(2t2k)0的解集非空,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,曲線的參數方程為為參數),以原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(限定).

(1)寫出曲線的極坐標方程,并求交點的極坐標;

(2)射線與曲線分別交于點異于原點),求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是橢圓)的左頂點,左焦點是線段的中點,拋物線的準線恰好過點

(1)求橢圓的方程;

(2)如圖所示,過點作斜率為的直線交橢圓于點,交軸于點,若為線段的中點,過作與直線垂直的直線,證明對于任意的),直線過定點,并求出此定點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某網站從春節(jié)期間參與收發(fā)網絡紅包的手機用戶中隨機抽取2000名進行調查,將受訪用戶按年齡分成5: 并整理得到如下頻率分布直方圖:

(1)的值;

(2)從春節(jié)期間參與收發(fā)網絡紅包的手機用戶中隨機抽取一人,估計其年齡低于40歲的概率;

(3)估計春節(jié)期間參與收發(fā)網絡紅包的手機用戶的平均年齡.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是集合的兩個子集,滿足:的元素個數相同,且為空集,若時總有,則集合的元素個數最多為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案