【題目】如圖,在四棱錐中,平面平面,且,四邊形滿足,為側(cè)棱上的任意一點(diǎn).

1)求證:平面平面.

2)是否存在點(diǎn),使得直線與平面垂直?若存在,寫出證明過程并求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.

【答案】1)證明見解析(2)存在點(diǎn),證明見解析;線段的長(zhǎng)為

【解析】

1)由平面平面,易得平面,所以,又,根據(jù)線面垂直的判定定理,得平面,再由面面垂直的判定定理,得平面平面.

2)這是一個(gè)探索性問題,將問題倒推來分析,若有直線與平面垂直,根據(jù)點(diǎn)F,即證使的位置.

1)∵平面平面,平面平面,

平面.

平面,又平面,

.

,

平面,又平面,

∴平面平面.

2)存在點(diǎn),當(dāng)時(shí),直線與平面垂直.

證明如下:

,

.

平面

,

,

平面,又平面,

.

,

平面.

中,,

.

∴存在點(diǎn),使得直線與平面垂直.此時(shí)線段的長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C,O為坐標(biāo)原點(diǎn),FC的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)若關(guān)于的不等式的解集為,求實(shí)數(shù)的值;

2)求不等式的解集;

3)若對(duì)于,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜三棱柱的棱長(zhǎng)都是,側(cè)棱與底面成60°角,側(cè)面底面.

1)求證:;

2)求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺(tái)中,底面,四邊形為菱形,.

(1)若中點(diǎn),求證:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)判斷的單調(diào)性;

(2)若函數(shù)存在極值,求這些極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出如下四個(gè)命題:①若“”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個(gè)數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若是函數(shù)的一個(gè)極值點(diǎn),求實(shí)數(shù)的值;

(2)討論函數(shù)的單調(diào)性.

(3)若對(duì)于任意的,當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量=(2sin x,cos x),=(-sin x,2sin x),函數(shù)fx)=·

1)求fx)的單調(diào)遞增區(qū)間;

2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且fC)=1c1,ab2,且a>b,求ab的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案