【題目】已知橢圓離心率為,且與雙曲線有相同焦點(diǎn).

1)求橢圓標(biāo)準(zhǔn)方程;

2)過點(diǎn)的直線與橢圓交于、兩點(diǎn),原點(diǎn)在以為直徑的圓上,求直線的方程.

【答案】1;(2.

【解析】

1)設(shè)所求橢圓的標(biāo)準(zhǔn)方程為,焦距為,求出雙曲線的焦點(diǎn)坐標(biāo),根據(jù)題意求出、、的值,即可得出橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線的方程為,設(shè)點(diǎn),將直線的方程與橢圓方程聯(lián)立,列出韋達(dá)定理,由題意得出,可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合韋達(dá)定理求出的值,即可求得直線的方程.

1)設(shè)所求橢圓的標(biāo)準(zhǔn)方程為,焦距為,

雙曲線的標(biāo)準(zhǔn)方程為其焦點(diǎn)為,則橢圓中

橢圓的離心率為,,

因此,橢圓標(biāo)準(zhǔn)方程為;

2)若直線的斜率為零,則直線軸重合,此時(shí)點(diǎn)、

此時(shí),以為直徑的圓的圓心為坐標(biāo)原點(diǎn),不合乎題意;

設(shè)直線的方程為,設(shè)點(diǎn)、,

聯(lián)立,消去并整理得

,

由韋達(dá)定理得,

由題意知,即,解得

所以,直線的方程為,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)證明:

(2)若,證明;

(3)用表示中的較大值,設(shè)函數(shù),討論函數(shù)上的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

2)已知函數(shù),,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)記,試判斷在區(qū)間內(nèi)零點(diǎn)個(gè)數(shù)并說明理由;

2)記(1)中的內(nèi)的零點(diǎn)為,,若有兩個(gè)不等實(shí)根,判斷的大小,并給出對(duì)應(yīng)的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形是邊長為2的菱形,,的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的離心率為,且焦點(diǎn)到漸近線的距離為

1)求雙曲線的標(biāo)準(zhǔn)方程;

2)若以為斜率的直線與雙曲線相交于兩個(gè)不同的點(diǎn),且線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程x2+x10的解可視為函數(shù)yx+的圖象與函數(shù)y的圖象交點(diǎn)的橫坐標(biāo),若x4+ax40的各個(gè)實(shí)根x1,x2,xk(k≤4)所對(duì)應(yīng)的點(diǎn)(xi ,)i1,2,…,k)均在直線yx的同側(cè),則實(shí)數(shù)a的取值范圍是      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,棱的中點(diǎn)為,若光線從點(diǎn)出發(fā),依次經(jīng)三個(gè)側(cè)面,,反射后,落到側(cè)面(不包括邊界),則入射光線與側(cè)面所成角的正切值的范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=a1nxax+1aRa≠0).

1)求函數(shù)fx)的單調(diào)區(qū)間;

2)求證:n≥2,nN*).

查看答案和解析>>

同步練習(xí)冊(cè)答案