• <ins id="21i9l"><noframes id="21i9l"></noframes></ins>
    <table id="21i9l"><pre id="21i9l"><menu id="21i9l"></menu></pre></table>
    <small id="21i9l"><ul id="21i9l"></ul></small>
    <big id="21i9l"><legend id="21i9l"></legend></big>
  • 已知函數(shù)f(x)=x+4x+3,g(x)為一次函數(shù),若f(g(x))=x+10x+24,求g(x)
    的表達式.
    g(x)=x+3或g(x)="-x-7"
    本試題主要是考查了函數(shù)的解析式的求解的運用。設(shè)出一次函數(shù),然后利用函數(shù)解析式的求解得到f(g(x))=x+10x+24,利用對應(yīng)相等得到結(jié)論。
    解:由題意可設(shè)g(x)=ax+b,
    ∴f(g(x))=f(ax+b)=(ax+b)+4(ax+b)+3=ax+(2ab+4a)x+b+4b+3
    又∵f(g(x))=x+10x+24
    解得所以g(x)=x+3或g(x)="-x-7"
    練習冊系列答案
    相關(guān)習題

    科目:高中數(shù)學 來源:不詳 題型:解答題

    已知的定義域為,且恒有等式對任意的實
    數(shù)成立.
    (Ⅰ)試求的解析式;
    (Ⅱ)討論上的單調(diào)性,并用單調(diào)性定義予以證明.

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:單選題

    函數(shù)處分別取得最大值和最小值,且對于任意
    A.函數(shù)一定是周期為4的偶函數(shù)
    B.函數(shù)一定是周期為2的奇函數(shù)
    C.函數(shù)一定是周期為4的奇函數(shù)
    D.函數(shù)一定是周期為2的偶函數(shù)

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:單選題

    函數(shù),[0,3]的值域是
    A.B.[-1,3] C.[0,3]  D.[-1,0]

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:填空題

    在平面直角坐標系中,橫、縱坐標均為整數(shù)的點叫做格點,若某函數(shù)f(x)的圖象恰好經(jīng)過n個格點,則稱該函數(shù)f(x)為n階格點函數(shù).給出下列函數(shù):①y=x2;②y=lnx;③y=3x-1;④y=x+;⑤y=cosx.其中為一階格點函數(shù)的是________(填序號).

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:單選題

    已知集合,則構(gòu)造從集合到集合的映射,最多有(  )
    A.B.C.D.

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:單選題

    我們把具有以下性質(zhì)的函數(shù) 稱為“好函數(shù)”:對于在定義域內(nèi)的任意三個數(shù),若這三個數(shù)能作為三角形的三邊長,則也能作為三角形的三邊長.現(xiàn)有如下一些函數(shù):   
                                    ②
                         ④,.
    其中是“好函數(shù)”的序號有(    )
    A.①②B.①②③C.②③④D.①③④

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:解答題

    已知函數(shù), 若2)=1,求
    (1) 實數(shù)的值;
    (2)函數(shù)的值;
    (3)不等式的解集.

    查看答案和解析>>

    科目:高中數(shù)學 來源:不詳 題型:解答題

    已知函數(shù)
    (I)求f(x)在[0,1]上的極值;
    (II)若對任意成立,求實數(shù)a的取值范圍;
    (III)若關(guān)于x的方程在[0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

    查看答案和解析>>

    同步練習冊答案