【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如:
他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似的,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )
A. 36 B. 45 C. 99 D. 100
科目:高中數(shù)學 來源: 題型:
【題目】某高校在2011年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.
(Ⅰ)分別求第3,4,5組的頻率;
(Ⅱ)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,求第3,4,5組每組各抽取多少名學生進入第二輪面試?
(Ⅲ)在(Ⅱ)的前提下,學校決定在這6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有一名學生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的圖像與函數(shù)h(x)=的圖像關于點A(0,1)對稱。
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=xf(x)+ax,且g(x)在區(qū)間(0,4]上為減函數(shù),求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=-2x+m,其中m為常數(shù).
(1)求證:函數(shù)f(x)在R上是減函數(shù);
(2)當函數(shù)f(x)是奇函數(shù)時,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,M,N,Q分別是棱D1C1,A1D1,BC的中點,P在對角線BD1上,且BP=BD1,給出下面四個命題:
(1)MN∥平面APC;(2)C1Q∥平面APC;(3)A,P,M三點共線;(4)平面MNQ∥平面APC.正確的序號為 ( )
A. (1)(2) B. (1)(4) C. (2)(3) D. (3)(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以為直徑的圓經(jīng)過、兩點,延長、交于點,將沿線段折起,使點在底面的射影恰好為的中點.若,,線段、的中點分別為.
(1)判斷四點是否共面,并說明理由;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中華人民共和國個人所得稅》規(guī)定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月納稅所得額,此項稅款按下表分段累計計算:
已知張先生的月工資、薪金所得為10000元,問他當月應繳納多少個人所得稅?
設王先生的月工資、薪金所得為元,當月應繳納個人所得稅為元,寫出與的函數(shù)關系式;
(3)已知王先生一月份應繳納個人所得稅為303元,那么他當月的個工資、薪金所得為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com