精英家教網 > 高中數學 > 題目詳情
已知a>0且a≠1,數列{an}是首項為a,公比也為a的等比數列,設bn=an•1gan,問是否存在a,對任意自然數n∈N*,數列{bn}中的每一項總小于它后面所有的項?若存在,求出a的取值范圍;若不存在,則說明理由.
∵{an}是首項為a,公比為a的等比數列,
an=an,bn=an•1gan=nanlga,
bn+1=(n+1)an+1 lga,
bn+1-bn=an[(n+1)a-n]lga
(1)當a>1時,lga>0,an>0,(n+1)a-n>(n+1)-n>0,
bnbn+1(n∈N*)
(2)當0<a<1時,lga<0,
當且僅當(n+1)a-n<0(n∈N*)時,
bnbn+1(n∈N*)
即當a<
n
n+1
(n∈N*)時,bn<bn+1(n∈N*),
而當n∈N*時,n+1≤2n,即
n
n+1
1
2

∴只要取a<
1
2

綜上所述,當a的取值為(0,
1
2
)∪(1,+∞)時,
使得數列{bn}中的任一項都小于它后面各項.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a>0且a≠1,設p:函數y=ax在R上單調遞增,q:設函數y=
2x-2a,(x≥2a)
2a,(x<2a)
,函數y≥1恒成立,若p∧q為假,p∨q為真,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•普陀區(qū)二模)已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區(qū)間[0,1)內有解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0且a≠1,則使方程loga(x-ak)=loga2(x2-a2)有解時的k的取值范圍為
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)試討論函數F(x)在定義域D上的單調性;
(3)若關于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內僅有一解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:普陀區(qū)二模 題型:解答題

已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
1
1-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區(qū)間[0,1)內有解,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案