【題目】已知橢圓)的左右焦點分別為,關于直線的對稱點在直線上.

(1)求橢圓的離心率;

(2)若的長軸長為且斜率為的直線交橢圓于,兩點,問是否存在定點,使得,的斜率之和為定值?若存在,求出所有滿足條件的點坐標;若不存在,說明理由.

【答案】(1);(2)滿足條件的定點是存在的,坐標為

【解析】試題分析:(1)依題知,根據(jù)對稱求出點M,根據(jù)點在直線上,可得離心率;(2)由(1)可得橢圓方程為,設設直線方程為,聯(lián)立方程,根據(jù)根與系數(shù)的關系可得,,設,可得 ,化簡整理即可.

試題解析:

(1)依題知,設,則,解得,即

在直線上,∴,,∴

(2)由(1)及題設得:,∴,,∴橢圓方程為

設直線方程為,代入橢圓方程消去整理得.依題,即

,,則,

如果存在使得為定值,那么的取值將與無關

,令

為關于的恒等式

,解得

綜上可知,滿足條件的定點是存在的,坐標為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機調查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結果如表所示:

(1)由頻率分布直方圖,估計這100人年齡的平均數(shù);

(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的22列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過5%的前提下,認為以45歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計

不支持

支持

總計

參考數(shù)據(jù):

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù),),以為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)對任意實數(shù)x、y恒有,當x>0時,f(x)<0,且.

(1)判斷的奇偶性;

(2)在區(qū)間[-3,3]上的最大值;

(3)對所有的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中有如下問題:今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:今有底面為矩形的屋脊狀的楔體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為(

A. 10000立方尺 B. 11000立方尺

C. 12000立方尺 D. 13000立方尺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)當時,若對任意均有成立,求實數(shù)的取值范圍;

(2)設直線與曲線和曲線相切,切點分別為,,其中.

①求證:;

②當時,關于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若質地均勻的六面體玩具各面分別標有數(shù)字1,2,3,4,5,6.拋擲該玩具后,任何一個數(shù)字所在的面朝上的概率均相等.拋擲該玩具一次,記事件A=“向上的面標記的數(shù)字是完全平方數(shù)(即能寫出整數(shù)的平方形式的數(shù),如9=32,9是完全平方數(shù))

(1)甲、乙二人利用該玩具進行游戲,并規(guī)定:①甲拋擲一次,若事件A發(fā)生,則向上一面的點數(shù)的6倍為甲的得分;若事件A不發(fā)生,則甲得0分;②乙拋擲一次,將向上的一面對應的數(shù)字作為乙的得分。現(xiàn)甲、乙二人各拋擲該玩具一次,分別求二人得分的期望;

(2)拋擲該玩具一次,記事件B=“向上一面的點數(shù)不超過,若事件AB相互獨立,試求出所有的整數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某良種培育基地正在培育一種小麥新品種A,將其與原有的一個優(yōu)良品種B進行對照試驗,兩種小麥各種植了24畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下:

品種A:357,359,367,368,375,388,392,399400,405,412414,415421,423423,427,430430,434,443445,451,454

品種B363371,374,383385,386,391392,394395,397397,400,401,401,403,406,407,410412,415,416,422430

1)畫出莖葉圖.

2)用莖葉圖處理現(xiàn)有的數(shù)據(jù),有什么優(yōu)點?

3)通過觀察莖葉圖,對品種AB的畝產(chǎn)量及其穩(wěn)定性進行比較,寫出統(tǒng)計結論。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,,四邊形

為矩形,平面平面,.

I)求證:平面

II)點在線段上運動,設平面與平面所成二面角的平面角為,

試求的取值范圍.

查看答案和解析>>

同步練習冊答案