【題目】濱湖區(qū)擬建一主題游戲園,該游戲園為四邊形區(qū)域ABCD,其中三角形區(qū)城ABC為主題活動區(qū),其中∠ACB=60°,∠ABC=45°,AB=12 m;AD、CD為游客通道(不考慮寬度),且∠ADC=120°,通道AD、CD圍成三角形區(qū)域ADC為游客休閑中心,供游客休憩.
(1)求AC的長度;
(2)記游客通道AD與CD的長度和為L,求L的最大值.
【答案】
(1)解:由已知由正弦定理,得 ,又∠ACB=60°,∠ABC=45°,AB=12 cm,所以AC= =24m.
(2)解:因為∠ADC=120°∠CAD=θ,∠ACD=60°﹣θ,
在△ADC中,由正弦定理得到 ,
所以L=CD+AD=16 [sin(60°﹣θ)+sinθ]=16 [sin60°cosθ﹣cos60°sinθ+sinθ]=16 sin(60°+θ),因0°<θ<60°,當(dāng)θ=30°時,L取到最大值 16 m.
【解析】(1)利用正弦定理,求AC的長度.(2)求出AD,CD,可得出L關(guān)于θ的關(guān)系式,化簡后求L的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國內(nèi),某知名連接店分店開張營業(yè)期間,在固定的時間段內(nèi)消費達(dá)到一定標(biāo)準(zhǔn)的顧客可進行一次抽獎活動,隨著抽獎的有效展開,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前7天參加抽獎活動的人數(shù)進行統(tǒng)計, 表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
經(jīng)過進一步的統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(1)如從這7天中隨便機抽取兩天,求至少有1天參加抽獎人數(shù)超過10天的概率;
(2)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出與的線性回歸方程,并估計若該活動持續(xù)10天,共有多少名顧客參加抽獎.
參考公式: , , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x-k)ex,
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)任取,記“關(guān)于的方程有一個大于1的根和一個小于1的根”為事件,求發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A、B、C的對邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上任一點,且點.
(1)若在圓上,求線段的長及直線的斜率.
(2)求的最大值和最小值.
(3)若,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且Sn=2n2+n,n∈N,數(shù)列{bn}滿足an=4log2bn+3,n∈N.
(1)求an,bn;
(2)求數(shù)列{anbn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊長分別是a,b,c.
(1)若c=2, ,且△ABC的面積 ,求a,b的值;
(2)若sinC+sin(B﹣A)=sin2A,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)若 =﹣2,求實數(shù)k的值;
(3)過點(0,4)作動直線m交圓C于E,F(xiàn)兩點.試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com