【題目】下列命題:
①若是定義在上的偶函數(shù),且在上是增函數(shù),,則;
②若銳角、滿足c,則;
③若,則對(duì)恒成立;
④要得到的圖像,只需將的圖像向右平移個(gè)單位:
其中真命題的個(gè)數(shù)有( )
A.1B.2C.3D.4
【答案】A
【解析】
①根據(jù)偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反,得到在上是減函數(shù),再由,得到,利用單調(diào)性判斷.②根據(jù)、為銳角,得到,再由,利用余弦函數(shù)的單調(diào)性判斷.③將函數(shù)變形為,直接驗(yàn)證.④利用三角函數(shù)的平移變換判斷.
①因?yàn)?/span>是定義在上的偶函數(shù),且在上是增函數(shù),所以在上是減函數(shù),因?yàn)?/span>,所以,所以,故錯(cuò)誤;
②因?yàn)?/span>、為銳角,所以,又因?yàn)?/span>,所以,所以,故正確;
③若,則,故錯(cuò)誤;
④的圖像向右平移個(gè)單位得到,故錯(cuò)誤:
所以真命題的個(gè)數(shù)有1個(gè).
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn).現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取次.記錄如下:
甲: , , , , , , ,
乙: , , , , , , ,
()用莖葉圖表示這兩組數(shù)據(jù).
()現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為派哪位學(xué)生參加合適?請(qǐng)說(shuō)明理由.
()若將頻率視為概率,對(duì)甲同學(xué)在今后的三次數(shù)學(xué)競(jìng)賽成績(jī)進(jìn)行預(yù)測(cè),記這次成績(jī)中高于分的次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足,數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式(-1)nλ<Tn+對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正△ABC的邊長(zhǎng)為2, CD是AB邊上的高,E、F分別是AC和BC的中點(diǎn)(如圖(1)).現(xiàn)將△ABC沿CD翻成直二面角A-DC-B(如圖(2)).在圖(2)中:
(1)求證:AB∥平面DEF;
(2)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?證明你的結(jié)論;
(3)求二面角E-DF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行六面體ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.
(1)求異面直線A1B與AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若實(shí)數(shù),滿足,則的最小值是( )
A. 0 B. C. -6 D. -3
【答案】C
【解析】
畫出可行域,向上平移目標(biāo)函數(shù)到可行域邊界的位置,由此求得目標(biāo)函數(shù)的最小值.
畫出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)處取得最小值為.故選C.
【點(diǎn)睛】
本小題主要考查線性規(guī)劃的知識(shí),考查線性目標(biāo)函數(shù)的最值的求法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.畫可行域時(shí),要注意判斷不等式所表示的范圍是在直線的哪個(gè)方位,不一定是三條直線圍成的三角形.還要注意目標(biāo)函數(shù)化成斜截式后,截距和目標(biāo)函數(shù)的對(duì)應(yīng)關(guān)系,截距最大時(shí),目標(biāo)函數(shù)不一定取得最大值,可能取得最小值.
【題型】單選題
【結(jié)束】
12
【題目】已知,是橢圓長(zhǎng)軸上的兩個(gè)端點(diǎn),,是橢圓上關(guān)于軸對(duì)稱的兩點(diǎn),直線,的斜率分別為,若橢圓的離心率為,則的最小值為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱柱中,底面是梯形,,側(cè)面為菱形,.
(Ⅰ)求證:;
(Ⅱ)若,,直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校進(jìn)行文科、理科數(shù)學(xué)成績(jī)對(duì)比,某次考試后,各隨機(jī)抽取100名同學(xué)的數(shù)學(xué)考試成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布表如下.
(Ⅰ)根據(jù)數(shù)學(xué)成績(jī)的頻率分布表,求理科數(shù)學(xué)成績(jī)的中位數(shù)的估計(jì)值;(精確到0.01)
(Ⅱ)請(qǐng)?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為數(shù)學(xué)成績(jī)與文理科有關(guān):
參考公式與臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中,正確的命題是( )
A. BD與CF成60°角 B. BD與EF成60°角 C. AB與CD成60°角 D. AB與EF成60°角
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com