【題目】根據(jù)市場調(diào)查,某型號的空氣凈化器有如下的統(tǒng)計規(guī)律,每生產(chǎn)該型號空氣凈化器(百臺),其總成本為(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(Ⅰ)求利潤函數(shù)的解析式(利潤=銷售收入-總成本);
(Ⅱ)假定你是工廠老板,你該如何決定該產(chǎn)品生產(chǎn)的數(shù)量?
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長為1,E、F分別是棱是AA′,CC′的中點,過直線EF的平面分別與棱BB′,DD′交于M,N,設BM=x,x∈[0,1],給出以下四種說法:
(1)平面MENF⊥平面BDD′B′;
(2)當且僅當x=時,四邊形MENF的面積最小;
(3)四邊形MENF周長L=f(x),x∈[0,1]是單調(diào)函數(shù);
(4)四棱錐C′﹣MENF的體積V=h(x)為常函數(shù),以上說法中正確的為(。
A. (2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (1)(2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017全國Ⅱ,文19)海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:
舊養(yǎng)殖法
新養(yǎng)殖法
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān);
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,設命題p:函數(shù)y=ax在R上單調(diào)遞減,q:函數(shù)y=且y>1恒成立,若p∧q為假,p∨q為真,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知菱形ABCD的邊長為6,∠ABD=30°,點E、F分別在邊BC、DC上,BC=2BE,CD=λCF.若 =﹣9,則λ的值為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學在研究函數(shù)(x∈R)時,分別給出下面幾個結(jié)論:
①函數(shù)f(x)是奇函數(shù);②函數(shù)f(x)的值域為(-1,1);③函數(shù)f(x)在R上是增函數(shù);其中正確結(jié)論的序號是
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線
(1)求證:直線過定點;
(2)求直線被圓所截得的弦長最短時的值;
(3)已知點,在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com