已知函數(shù)f(x)=mx3-3(m+1)x2+3(m+2)x+1,其中m∈R.
(I)若m<0,求f(x)的單調(diào)區(qū)間;
(Ⅱ)在(I)的條件下,當(dāng)x∈[-1,1]時(shí),函數(shù)y=f(x)的圖象上任意一點(diǎn)的切線(xiàn)斜率恒大于3m,求m的取值范圍;
(Ⅲ)設(shè)g(x)=mx3-(3m+2)x2+3mx+4lnx+m+1,問(wèn)是否存在實(shí)數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有兩個(gè)不同的交點(diǎn)?若存在,求出m的值;若不存在,說(shuō)明理由.
【答案】分析:(I)由函數(shù)的解析式,求出導(dǎo)函數(shù)的解析式,結(jié)合m<0,確定導(dǎo)函數(shù)的零點(diǎn),即原函數(shù)的極值點(diǎn),并分析出函數(shù)的單調(diào)區(qū)間;
(II)根據(jù)已知可得不等式f'(x)>3m恒成立,結(jié)合m<0及二次函數(shù)的圖象和性質(zhì),可得m的取值范圍;
(Ⅲ)若y=f(x)的圖象與y=g(x)的圖象有且只有兩個(gè)不同的交點(diǎn),則φ(x)=g(x)-f(x)與x軸的正半軸有且只有兩個(gè)不同的交點(diǎn),利用導(dǎo)數(shù)法分析函數(shù)的單調(diào)性,可得滿(mǎn)足條件的m的值.
解答:解:(I)∵f(x)=mx3-3(m+1)x2+3(m+2)x+1,
∴f'(x)=3mx2-6(m+1)x+3m+6=…(2分)
當(dāng)m<0時(shí),有,
當(dāng)x變化時(shí),f(x)與f'(x)的變化如下表:
x1(1,+∞)
f'(x)<0>0<0
f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減
…(4分)
故有上表知,
當(dāng)m<0時(shí),f(x)
單調(diào)遞減,
單調(diào)遞增,
在(1,+∞)上單調(diào)遞減.…(5分)
(Ⅱ)由已知得f'(x)>3m,
即mx2-2(m+1)x+2>0
又m<0,
所以(x∈[-1,1]) ①…(6分)
設(shè)
其函數(shù)開(kāi)口向上,由題意知①式恒成立,
…(8分)
解之得
又m<0所以m的取值范圍為…(9分)
(Ⅲ)令φ(x)=g(x)-f(x),
則φ(x)=x2-6x+4lnx+m
因?yàn)閤>0,要使函數(shù)f(x)與函數(shù)g(x)有且僅有2個(gè)不同的交點(diǎn),
則函數(shù)φ(x)=x2-6x+4lnx+m的圖象與x軸的正半軸有且只有兩個(gè)不同的交點(diǎn)

當(dāng)x∈(0,1)時(shí),ϕ′(x)>0,ϕ(x)是增函數(shù);
當(dāng)x∈(1,2)時(shí),ϕ′(x)<0,ϕ(x)是減函數(shù)
當(dāng)x∈(2,+∞)時(shí),ϕ′(x)>0,ϕ(x)是增函數(shù)
∴φ(x)有極大值φ(1)=m-5;
φ(x)有極小值φ(2)=m+4ln2-8…(12分)
又因?yàn)楫?dāng)x充分接近0時(shí),φ(x)<0;當(dāng)x充分大時(shí),φ(x)>0
所以要使ϕ(x)=0有且僅有兩個(gè)不同的正根,
必須且只須
,
∴m=5或m=8-4ln2.
∴當(dāng)m=5或m=8-4ln2時(shí),
函數(shù)f(x)與g(x)的圖象有且只有兩個(gè)不同交點(diǎn).…(14分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程,熟練掌握導(dǎo)數(shù)在研究函數(shù)單調(diào)性和極值的方法和步驟是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過(guò)點(diǎn)A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項(xiàng)和,n∈N*
(1)求Sn及an
(2)若數(shù)列{cn}滿(mǎn)足cn=6nan-n,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m(x+
1
x
)的圖象與h(x)=(x+
1
x
)+2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱(chēng).
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
,
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對(duì)稱(chēng)軸間的距離不小于
π
2

(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a=
3
,b+c=3,當(dāng)ω最大時(shí),f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下兩題任選一題:(若兩題都作,按第一題評(píng)分)
(一):在極坐標(biāo)系中,圓ρ=2cosθ的圓心到直線(xiàn)θ=
π
3
(ρ∈R)的距離
3
2
3
2

(二):已知函數(shù)f(x)=m-|x-2|,m∈R,當(dāng)不等式f(x+2)≥0的解集為[-2,2]時(shí),實(shí)數(shù)m的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案