如圖,已知六棱錐P—ABCDEF的底面是正六邊形,平面ABC,,給出下列結(jié)論:①;②平面平面PBC;③直線平面PAE;④;⑤直線PD與平面PAB所成角的余弦值為。
其中正確的有 (把所有正確的序號(hào)都填上)。
①④⑤
解析試題分析:解:對(duì)于①、由PA⊥平面ABC,AE?平面ABC,得PA⊥AE,又由正六邊形的性質(zhì)得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB?平面PAB,∴AE⊥PB,①正確;
對(duì)于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②錯(cuò);
對(duì)于③、由正六邊形的性質(zhì)得BC∥AD,又AD?平面PAD,∴BC∥平面PAD,∴直線BC∥平面PAE也不成立,③錯(cuò);
對(duì)于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正確.
⑤直線PD與平面PAB所成角的余弦值為,成立。
故答案為:①④⑤
考點(diǎn):空間中的線面關(guān)系,正六邊形的性質(zhì)
點(diǎn)評(píng):本小題考查空間中的線面關(guān)系,正六邊形的性質(zhì)等基礎(chǔ)知識(shí),考查空間想象能力和思維能力,以及空間想象能力、推理論證能力和運(yùn)算求解能力
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在棱長(zhǎng)為1的正方體中,為的中點(diǎn),點(diǎn)為側(cè)面內(nèi)一動(dòng)點(diǎn)(含邊界),若動(dòng)點(diǎn)始終滿(mǎn)足,則動(dòng)點(diǎn)的軌跡的長(zhǎng)度為_(kāi)_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中,①平面;②平面;③平面平面;④平面平面.以上四個(gè)命題中,正確命題的序號(hào)是 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知正三棱柱ABC-A1B1C1的各條棱長(zhǎng)都相等,M是側(cè)棱CC1的中點(diǎn),則異面直線AB1和BM所成的角的大小是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,直四棱柱的底面是邊長(zhǎng)為1的正方形,側(cè)棱長(zhǎng),則異面直線與的夾角大小等于___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com