【題目】已知橢圓 的離心率為,焦距為,拋物線 的焦點是橢圓的頂點.

(1)求的標準方程;

(2)上不同于的兩點, 滿足,且直線相切,求的面積.

【答案】(1)..(2).

【解析】試題分析:設橢圓的焦距為,依題意求出 ,由此求出橢圓的標準方程;又拋物線 開口向上,故是橢圓的上頂點,由此能求出拋物線的標準方程;

⑵設直線的方程為,設, ,則能得到, ,聯(lián)立

,得 ,;由此利用根的判別式,韋達定理,弦長公式,結合已知條件能求出的面積

解析:(1)設橢圓的焦距為,依題意有,

解得, ,故橢圓的標準方程為.

又拋物線 開口向上,故是橢圓的上頂點,

,,故拋物線的標準方程為.

(2)顯然,直線的斜率存在.設直線的方程為,設, ,則, ,

,

聯(lián)立,消去整理得, .

依題意, ,是方程的兩根,

,

代入,

解得,( 不合題意,應舍去)

聯(lián)立,消去整理得, ,

,解得.

經(jīng)檢驗, , 符合要求.

此時, ,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為偶函數(shù),且當時,..給出下列關于函數(shù)的說法:①當時,;②函數(shù)為奇函數(shù);③函數(shù)上為增函數(shù);④函數(shù)的最小值為,無最大值.其中正確的是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過橢圓的右焦點,拋物線的焦點為橢圓的上頂點,且交橢圓兩點,點在直線上的射影依次為.

(1)求橢圓的方程;

(2)若直線軸于點,且,當變化時,證明: 為定值;

(3)當變化時,直線是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中, 分別為, 的中點, , .

(1)求證:直線平面

(2)求證:直線 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 平面 平面, 是等邊三角形,

的中點.

(1)求證: ;

(2)若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標志為連續(xù)10天,每天新增疑似病例不超過7”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是

A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20名學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如圖.

(1)求頻率分布直方圖中a的值;

(2)估計總體中成績落在[50,60)中的學生人數(shù);

(3)根據(jù)頻率分布直方圖估計20名學生數(shù)學考試成績的眾數(shù),平均數(shù);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個子中裝有四張卡片,每張卡片上寫有一個數(shù)字,數(shù)字分別是,現(xiàn)盒子中隨機抽取卡片,每張卡片被抽到的概率相等.

(1)若一次抽取三張卡片,求抽到的三張卡片上的數(shù)字之和大于的概率;

(2)若第一次抽一張卡片,放回后勻再抽取一張卡片,求兩次抽取中至少有一次到寫有數(shù)字的卡片的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓內一定點,動圓過點且與圓內切.記動圓圓心的軌跡為.

(Ⅰ)求軌跡方程;

(II)過點的動直線l交軌跡M,N兩點,試問:在坐標平面上是否存在一個定點Q,使得以線段MN為直徑的圓恒過點Q?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案