如圖,已知點(diǎn)A是橢圓的右頂點(diǎn),若點(diǎn)在橢圓上,且滿足.(其中O為坐標(biāo)原點(diǎn))
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l與橢圓交于兩點(diǎn)M,N,當(dāng)時(shí),求△OMN面積的最大值.

【答案】分析:(Ⅰ)由點(diǎn)在橢圓上,知,由,知,由此能求出橢圓的方程.
(Ⅱ)設(shè)M(x1,y1),N(x2,y2),由,知,利用點(diǎn)差法得到直線,由此能求出△OMN面積的最大值.
解答:解:(Ⅰ)∵點(diǎn)在橢圓上,
,
,
,解得a=3,∴b=1.
∴橢圓的方程為=1.
(Ⅱ)設(shè)M(x1,y1),N(x2,y2),
,

設(shè)直線,
,得:4y2-6ny+3n2-1=0

,
點(diǎn)O到直線l的距離d=,
∴S=
=
=
當(dāng)且僅當(dāng)3n2=4-3n2,n=±
∵m∈(0,2),∴m=
∴當(dāng)m=時(shí),△OMN面積的最大值為
點(diǎn)評(píng):本題考查橢圓方程的求法,考查三角形面積的最大值的求法.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意點(diǎn)差法和等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn),若點(diǎn)C(
3
2
,
3
2
)
在橢圓上,且滿足
OC
OA
=
3
2
.(其中O為坐標(biāo)原點(diǎn))
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l與橢圓交于兩點(diǎn)M,N,當(dāng)
OM
+
ON
=m
OC
,m∈(0,2)
時(shí),求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)B是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的短軸位于x軸下方的端點(diǎn),過(guò)B作斜率為1的直線交橢圓于點(diǎn)M,點(diǎn)P在y軸上,且PM∥x軸,
BP
BM
=9,若點(diǎn)P的坐標(biāo)為(0,t),則t的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省重點(diǎn)高中高二(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知點(diǎn)A是橢圓的右頂點(diǎn),若點(diǎn)在橢圓上,且滿足.(其中O為坐標(biāo)原點(diǎn))
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l與橢圓交于兩點(diǎn)M,N,當(dāng)時(shí),求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省溫州中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知點(diǎn)A是橢圓的右頂點(diǎn),若點(diǎn)在橢圓上,且滿足.(其中O為坐標(biāo)原點(diǎn))
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l與橢圓交于兩點(diǎn)M,N,當(dāng)時(shí),求△OMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案