如圖,三棱柱ABC-A1B1C1的底面是邊長為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長是
3
,D是AC的中點.
(1)求證:平面A1BD⊥平面A1ACC1;
(2)求直線AB1與平面A1BD所成的角的正弦值.
考點:平面與平面垂直的判定,直線與平面所成的角
專題:空間位置關(guān)系與距離
分析:(1)由已知條件得AA1⊥底面ABC,BD⊥平面A1ACC1,由此能證明平面A1BD⊥平面A1ACC1
(2)作AM⊥A1D,設(shè)AB1與A1B相交于點P,連接MP,則∠APM就是直線A1B與平面A1BD所成的角,由此能求出直線AB1與平面A1BD所成的角的正弦值.
解答: (1)證明:∵正三棱住ABC-A1B1C1,∴AA1⊥底面ABC,
又∵BD⊥AC,A1A∩AC=A,∴BD⊥平面A1ACC1,
又∵BD?平面A1BD,
∴平面A1BD⊥平面A1ACC1…6分
(2)解:作AM⊥A1D,M為垂足,
由(1)知AM⊥平面A1DB,設(shè)AB1與A1B相交于點P,
連接MP,則∠APM就是直線A1B與平面A1BD所成的角,…9分
∵AA1=
3
,AD=1,∴在Rt△AA1D中,
∠A1DA=
π
3
,∴AM=1×sin60°=
3
2
,AP=
1
2
AB1
=
7
2

∴sin∠APM=
AM
AP
=
3
2
7
2
=
21
7

直線AB1與平面A1BD所成的角的正弦值為
21
7
.…12分.
點評:本題考查平面與平面垂直的證明,考查直線性與平面所成角的正弦值的求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(1+x)lnx.
(Ⅰ)判斷f(x)在(0,+∞)的單調(diào)性并證明你的結(jié)論;
(Ⅱ)設(shè)g(x)=
f(x)
a(1-x)
(a≠0),若對一切的x∈(0,1),不等式g(x)<-2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,點P(1,
2
3
3
)是橢圓上的一點,且|PF1|+|PF2|=2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l1,l2分別過點F1,F(xiàn)2,且l1⊥l2,直線l1交橢圓C于D、E兩點,直線l2交橢圓C于M、N兩點,求四邊形DMEN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在股票市場上,投資者常參考股價(每一股的價格)的某條平滑均線的變化情況來決定買入或賣出股票.股民老張在研究股票的走勢圖時,發(fā)現(xiàn)一只股票的均線近期走得很有特點:如果按如圖所示的方式建立平面直角坐標系xoy,則股價y(元)和時間x的關(guān)系在ABC段可近似地用解析式y(tǒng)=asin(ωx+φ)+b(0<φ<π)來描述,從C點走到今天的D點,是震蕩筑底階段,而今天出現(xiàn)了明顯的筑底結(jié)束的標志,且D點和C點正好關(guān)于直線l:x=34對稱.老張預計這只股票未來的走勢如圖中虛線所示,這里DE段與ABC段關(guān)于直線l對稱,EF段是股價延續(xù)DE段的趨勢(規(guī)律)走到這波上升行情的最高點F.現(xiàn)在老張決定取點A(0,22),點B(12,19),點D(44,16)來確定解析式中的常數(shù)a,b,ω,φ,并且求得ω=
π
72

(1)請你幫老張算出a,b,φ,并回答股價什么時候見頂(即求F點的橫坐標)
(2)老張如能在今天以D點處的價格買入該股票3000股,到見頂處F點的價格全部賣出,不計其它費用,這次操作他能賺多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,過圓x2+y2=1上的動點M作y軸的垂線且交y軸于點N,點Q滿足:
OQ
=2
OM
-
ON

(1)求點Q的軌跡方程C;
(2)設(shè)曲線C分別與x,y軸正半軸交于A,B兩點,直線y=kx(k>0)與曲線C交于E,F(xiàn)兩點,與線段AB交于點D,
ED
=6
DF
,求k值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,B=45°,AC=
10
,cosC=
2
5
5

(Ⅰ)求sinA的值和邊AB的長;
(Ⅱ)設(shè)AB的中點為D,求中線CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
xlnx(0<x<1)
lnx
x
(x≥1)
,則函數(shù)的最大值與最小值的和等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-
x2
2
+x在區(qū)間[m,n]上的值域是[3m,3n],則m-n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(ωx+ϕ)(ω>0,|ϕ|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點向右平移
 
 個單位長度.

查看答案和解析>>

同步練習冊答案