分析 (1)推導(dǎo)出DG∥EF,GF∥DE,由此能證明四邊形DEFG為平行四邊形.
(2)設(shè)DG=x(0<x<6),推導(dǎo)出DE=GF=$\frac{12-2x}{3}$,∠GDE=60°,四邊形DEFG面積S=DG•DE•sin60°,由此能求出四邊形DEFG面積取最大值.
解答 證明:(1)∵面α截三棱錐P-ABC得截面DEFG,PA∥α,BC∥α.
平面PAB∩截面DEFG=DG,
∴PA∥DG,PA∥EF,∴DG∥EF,
同理,GF∥DE,
∴四邊形DEFG為平行四邊形.
解:(2)設(shè)DG=x(0<x<6),
則$\frac{BG}{BP}=\frac{DG}{AP}=\frac{x}{6}$,∴$\frac{PG}{BP}=\frac{6-x}{6}=\frac{GF}{BC}=\frac{GF}{4}$,
∴DE=GF=$\frac{12-2x}{3}$,
∵PA∥DG,BC∥DE,PA與BC所成的角為600,
∴∠GDE=60°,
∴四邊形DEFG面積S=DG•DE•sin60°=x•$\frac{12-2x}{3}$•sin60°=-$\frac{\sqrt{3}}{3}$(x-3)2+3$\sqrt{3}$.
∴當(dāng)x=3時(shí),四邊形DEFG面積取最大值3$\sqrt{3}$.
點(diǎn)評 本題考查四邊形為平行四邊形的證明,考查四邊形的面積的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 不是充分條件,也不是必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 15 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 | 6 | … |
f(x) | 5 | 1 | 3 | 2 | 6 | 4 | … |
A. | 1 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com