【題目】四棱錐中,平面平面,四邊形為矩形,,,.
(1)求證:平面;
(2)若直線與平面所成角的正弦值為,求二面角的余弦值.
【答案】(1)見證明(2)
【解析】
(1)先根據(jù)面面垂直性質(zhì)定理得線面垂直,再根據(jù)線面垂直判定與性質(zhì)定理證結(jié)果,(2)建立空間直角坐標(biāo)系,利用空間向量求線面角與二面角.
解:(1)因?yàn)槠矫?/span>平面,且.
所以平面,所以.
又因?yàn)?/span>,,
所以平面,所以.
又因?yàn)?/span>,
所以平面.
(2)以為原點(diǎn),,,方向分別為軸,軸,軸正方向建立如圖空間直角坐標(biāo)系.
作于,連接,
因?yàn)槠矫?/span>平面,
所以平面,即為直線與平面所成的角,
故,所以.
中,令,則,
解得,
故,,.
設(shè)平面的一個法向量為,
則,
所以,可取.
又因?yàn)槠矫?/span>的一個法向量為,
故.
綜合圖形可知,所求二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別是,,,是其左右頂點(diǎn),點(diǎn)是橢圓上任一點(diǎn),且的周長為6,若面積的最大值為.
(1)求橢圓的方程;
(2)若過點(diǎn)且斜率不為0的直線交橢圓于,兩個不同點(diǎn),證明:直線與的交點(diǎn)在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓的左焦點(diǎn)為,橢圓上任意點(diǎn)到的最遠(yuǎn)距離是,過直線與軸的交點(diǎn)任作一條斜率不為零的直線與橢圓交于不同的兩點(diǎn)、,點(diǎn)關(guān)于軸的對稱點(diǎn)為.
(1)求橢圓的方程;
(2)求證:、、三點(diǎn)共線;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十八大以來,我國新能源產(chǎn)業(yè)迅速發(fā)展.以下是近幾年某新能源產(chǎn)品的年銷售量數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
新能源產(chǎn)品年銷售(萬個) | 1.6 | 6.2 | 17.7 | 33.1 | 55.6 |
(1)請畫出上表中年份代碼與年銷量的數(shù)據(jù)對應(yīng)的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷.
與中哪一個更適宜作為年銷售量關(guān)于年份代碼的回歸方程類型;
(2)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測2019年某新能源產(chǎn)品的銷售量(精確到0.01).
參考公式:,.
參考數(shù)據(jù):,,,,,,,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線:的焦點(diǎn)為,直線與交于,兩點(diǎn),的面積為.
(1)求的方程;
(2)若,是上的兩個動點(diǎn),,試問:是否存在定點(diǎn),使得?若存在,求的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓:的離心率為,直線:交橢圓于,兩點(diǎn),,且點(diǎn)在橢圓上,當(dāng)時,.
(1)求橢圓方程;
(2)試探究四邊形的面積是否為定值,若是,求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過點(diǎn)A(-4,4)且焦點(diǎn)在x軸.
(1)求拋物線方程;
(2)直線l過定點(diǎn)B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域?yàn)?/span>的函數(shù)圖像的兩個端點(diǎn)為、,向量,是圖像上任意一點(diǎn),其中,若不等式恒成立,則稱函數(shù)在上滿足“范圍線性近似”,其中最小正實(shí)數(shù)稱為該函數(shù)的線性近似閾值.若函數(shù)定義在上,則該函數(shù)的線性近似閾值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,為矩形,是以為直角的等腰直角三角形,平面平面.
(Ⅰ)證明:平面平面;
(Ⅱ)為直線的中點(diǎn),且,求二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com