如圖(1),等腰直角三角形ABC的底邊AB=4,點D在線段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(Ⅰ)求證:PB⊥DE;
(Ⅱ)若PE⊥BE,直線PD與平面PBC所成的角為30°,求PE長.
(Ⅰ)∵DE⊥AB,∴DE⊥BE,DE⊥PE,….(2分)
∵BE∩PE=E,∴DE⊥平面PEB,
又∵PB?平面PEB,∴BP⊥DE;….(4分)
(Ⅱ)∵PE⊥BE,PE⊥DE,DE⊥BE,
∴分別以DE、BE、PE所在直線為x軸、y軸、z軸建立空間直角坐標系(如圖),…(5分)
設(shè)PE=a,則B(0,4-a,0),D(a,0,0),C(2,2-a,0),
P(0,0,a),…(7分)
可得
PB
=(0,4-a,-a)
,
BC
=(2,-2,0)
,…(8分)
設(shè)面PBC的法向量
n
=(x,y,z)
,
(4-a)y-az=0
2x-2y=0
令y=1,可得x=1,z=
4-a
a

因此
n
=(1,1,
4-a
a
)
是面PBC的一個法向量,…(10分)
PD
=(a,0,-a)
,PD與平面PBC所成角為30°,…(12分)
sin30°=|cos<
PD
,
n
>|
,即|
a-(4-a)
2a2
×
2+
(4-a)2
a2
|=
1
2
,…(11分)
解之得:a=
4
5
,或a=4(舍),因此可得PE的長為
4
5
.…(13分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四面體SABC中,SA⊥底面ABC,△ABC是銳角三角形,H是點A在面SBC上的射影.求證:H不可能是△SBC的垂心.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平行六面體ABCD-A1B1C1D1中,若AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°.
(1)求AC1的長;
(2)求異面直線AC1與A1B所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,ABCD-A1B1C1D1是四棱柱,AA1⊥底面ABCD,ABCD,AB⊥AD,AD=CD=AA1=1,AB=2.
(1)求證:A1C1⊥平面BCC1B1
(2)求平面A1BD與平面BCC1B1所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在長方體ABCD-A1B1C1D1中,AA1=AD=2,點E在棱CD上,且CE=
1
3
CD

(1)求證:AD1⊥平面A1B1D;
(2)在棱AA1上是否存在點P,使DP平面B1AE?若存在,求出線段AP的長;若不存在,請說明理由;
(3)若二面角A-B1E-A1的余弦值為
30
6
,求棱AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,己知平行四邊形ABCD中,∠BAD=60°,AB=6,AD=3,G為CD中點,現(xiàn)將梯形ABCG沿著AG折起到AFEG.
(I)求證:直線CE直線BF;
(II)若直線GE與平面ABCD所成角為
π
6

①求證:FG⊥平面ABCD:
②求二面B一EF一A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是梯形,ADBC,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=2,AD=1.
(Ⅰ)求證:BC⊥平面PAB;
(Ⅱ)求異面直線PC與AB所成角的余弦值;
(Ⅲ)在側(cè)棱PA上是否存在一點E,使得平面CDE與平面ADC所成角的余弦值是
2
3
,若存在,求出AE的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖直角梯形OABC中,∠COA=∠AOB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分別以O(shè)C,OA,OS為x軸、y軸、z軸建立直角坐標系O-xyz.
(Ⅰ)求
SC
OB
夾角的余弦值;
(Ⅱ)求OC與平面SBC夾角的正弦值;
(Ⅲ)求二面角S-BC-O.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)R,向量,則(    )
A.B.C.D.10

查看答案和解析>>

同步練習冊答案